ﻻ يوجد ملخص باللغة العربية
Teichmullers problem from 1944 is this: Given $xin [0,1)$ find and describe the extremal quasiconformal map $f:IDtoID$, $f|partial ID=identity$ and $f(0)=-xleq 0$. We consider this problem in the setting of minimisers of $L^p$-mean distortion. The classical result is that there is an extremal map of Teichmuller type with associated holomorphic quadratic differential having a pole of order one at $x$, if $x eq 0$. For the $L^p$-norm, when $p=1$ it is known that there can be no locally quasiconformal minimiser unless $x=0$. Here we show that for $1leq p<infty$ there is a minimiser in a weak class and an associated Ahlfors-Hopf holomorphic quadratic differential with a pole of order $1$ at $f(0)=r$. However, this minimiser cannot be in $W^{1,2}_{loc}(ID)$ unless $r=0$ and $f=identity$. Hence there is no locally quasiconformal minimiser. A similar statement holds for minimsers of the exponential norm of distortion. We also use our earlier work to show that as $ptoinfty$, the weak $L^p$-minimisers converge locally uniformly in $ID$ to the extremal quasiconformal mapping, and that as $pto 1$ the weak $L^p$-minimisers converge locally uniformly in $ID$ to the identity.
We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-bounde
We construct an Ahlfors-Bers complex analytic model for the Teichmuller space of the universal hyperbolic lamination (also known as Sullivans Teichmuller space) and the renormalized Weil-Petersson metric on it as an extension of the usual one. In thi
In this article, we obtain an effectiveness result of strong openness property in $L^p$ with some applications.
In this paper we study the L^p-convergence of the Riesz means for the sublaplacian on the sphere S^{2n-1} in the complex n-dimensional space C^n. We show that the Riesz means of order delta of a function f converge to f in L^p(S^{2n-1}) when delta>de
The author showed that a sequence in the unit disk is a zero sequence for the Bergman space $A^p$ if and only if a certain weighted space $L^p(W}$ contains a nontrivial analytic function. In this paper it is shown that the sequence is an interpolatin