ﻻ يوجد ملخص باللغة العربية
In the absence of dissipation a non-rotating magnetic nanoparticle can be stably levitated in a static magnetic field as a consequence of the spin origin of its magnetization. Here, we study the effects of dissipation on the stability of the system, considering the interaction with the background gas and the intrinsic Gilbert damping of magnetization dynamics. We find that dissipation limits the time over which a particle can be stably levitated. At large applied magnetic fields we identify magnetization switching induced by Gilbert damping as the key limiting factor for stable levitation. At low applied magnetic fields and for small particle dimensions magnetization switching is prevented due to the strong coupling of rotation and magnetization dynamics, and the stability is mainly limited by the gas-induced dissipation. In this latter case, high vacuum should be sufficient to extend stable levitation over experimentally relevant timescales. Our results demonstrate the possibility to experimentally observe the phenomenon of quantum spin stabilized magnetic levitation.
We theoretically show that, despite Earnshaws theorem, a non-rotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely the g
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum
Defect-based quantum systems in in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can dimi
We investigate the evolution of a central spin coupled to a spin bath without internal dynamics. We compare the cases where the bath couples to one or two components of the spin. It is found that the central spin dynamics is enhanced in the latter ca
We investigate the fate of the quantum Hall extended states within a continuum model with spatially correlated disorder potentials. The model can be projected onto a couple of the lowest Landau bands. Levitation of the $n=0$ critical states is observ