ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Pollution Reduction in Nighttime Photography

242   0   0.0 ( 0 )
 نشر من قبل Chang Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Nighttime photographers are often troubled by light pollution of unwanted artificial lights. Artificial lights, after scattered by aerosols in the atmosphere, can inundate the starlight and degrade the quality of nighttime images, by reducing contrast and dynamic range and causing hazes. In this paper we develop a physically-based light pollution reduction (LPR) algorithm that can substantially alleviate the aforementioned degradations of perceptual quality and restore the pristine state of night sky. The key to the success of the proposed LPR algorithm is an inverse method to estimate the spatial radiance distribution and spectral signature of ground artificial lights. Extensive experiments are carried out to evaluate the efficacy and limitations of the LPR algorithm.



قيم البحث

اقرأ أيضاً

The first mobile camera phone was sold only 20 years ago, when taking pictures with ones phone was an oddity, and sharing pictures online was unheard of. Today, the smartphone is more camera than phone. How did this happen? This transformation was en abled by advances in computational photography -the science and engineering of making great images from small form factor, mobile cameras. Modern algorithmic and computing advances, including machine learning, have changed the rules of photography, bringing to it new modes of capture, post-processing, storage, and sharing. In this paper, we give a brief history of mobile computational photography and describe some of the key technological components, including burst photography, noise reduction, and super-resolution. At each step, we may draw naive parallels to the human visual system.
Taking photographs in low light using a mobile phone is challenging and rarely produces pleasing results. Aside from the physical limits imposed by read noise and photon shot noise, these cameras are typically handheld, have small apertures and senso rs, use mass-produced analog electronics that cannot easily be cooled, and are commonly used to photograph subjects that move, like children and pets. In this paper we describe a system for capturing clean, sharp, colorful photographs in light as low as 0.3~lux, where human vision becomes monochromatic and indistinct. To permit handheld photography without flash illumination, we capture, align, and combine multiple frames. Our system employs motion metering, which uses an estimate of motion magnitudes (whether due to handshake or moving objects) to identify the number of frames and the per-frame exposure times that together minimize both noise and motion blur in a captured burst. We combine these frames using robust alignment and merging techniques that are specialized for high-noise imagery. To ensure accurate colors in such low light, we employ a learning-based auto white balancing algorithm. To prevent the photographs from looking like they were shot in daylight, we use tone mapping techniques inspired by illusionistic painting: increasing contrast, crushing shadows to black, and surrounding the scene with darkness. All of these processes are performed using the limited computational resources of a mobile device. Our system can be used by novice photographers to produce shareable pictures in a few seconds based on a single shutter press, even in environments so dim that humans cannot see clearly.
We propose a method for converting a single RGB-D input image into a 3D photo - a multi-layer representation for novel view synthesis that contains hallucinated color and depth structures in regions occluded in the original view. We use a Layered Dep th Image with explicit pixel connectivity as underlying representation, and present a learning-based inpainting model that synthesizes new local color-and-depth content into the occluded region in a spatial context-aware manner. The resulting 3D photos can be efficiently rendered with motion parallax using standard graphics engines. We validate the effectiveness of our method on a wide range of challenging everyday scenes and show fewer artifacts compared with the state of the arts.
In this work, we present a camera configuration for acquiring stereoscopic dark flash images: a simultaneous stereo pair in which one camera is a conventional RGB sensor, but the other camera is sensitive to near-infrared and near-ultraviolet instead of R and B. When paired with a dark flash (i.e., one having near-infrared and near-ultraviolet light, but no visible light) this camera allows us to capture the two images in a flash/no-flash image pair at the same time, all while not disturbing any human subjects or onlookers with a dazzling visible flash. We present a hardware prototype of this camera that approximates an idealized camera, and we present an imaging procedure that let us acquire dark flash stereo pairs that closely resemble those we would get from that idealized camera. We then present a technique for fusing these stereo pairs, first by performing registration and warping, and then by using recent advances in hyperspectral image fusion and deep learning to produce a final image. Because our camera configuration and our data acquisition process allow us to capture true low-noise long exposure RGB images alongside our dark flash stereo pairs, our learned model can be trained end-to-end to produce a fused image that retains the color and tone of a real RGB image while having the low-noise properties of a flash image.
The lensless pinhole camera is perhaps the earliest and simplest form of an imaging system using only a pinhole-sized aperture in place of a lens. They can capture an infinite depth-of-field and offer greater freedom from optical distortion over thei r lens-based counterparts. However, the inherent limitations of a pinhole system result in lower sharpness from blur caused by optical diffraction and higher noise levels due to low light throughput of the small aperture, requiring very long exposure times to capture well-exposed images. In this paper, we explore an image restoration pipeline using deep learning and domain-knowledge of the pinhole system to enhance the pinhole image quality through a joint denoise and deblur approach. Our approach allows for more practical exposure times for hand-held photography and provides higher image quality, making it more suitable for daily photography compared to other lensless cameras while keeping size and cost low. This opens up the potential of pinhole cameras to be used in smaller devices, such as smartphones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا