ترغب بنشر مسار تعليمي؟ اضغط هنا

Coincident Rigidity of 2-Dimensional Frameworks

184   0   0.0 ( 0 )
 نشر من قبل Hakan Guler
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fekete, Jordan and Kaszanitzky [4] characterised the graphs which can be realised as 2-dimensional, infinitesimally rigid, bar-joint frameworks in which two given vertices are coincident. We formulate a conjecture which would extend their characterisation to an arbitrary set T of vertices and verify our conjecture when |T| = 3.



قيم البحث

اقرأ أيضاً

A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system, and is rigid if it is uniquely defined within some small open neighbourhood. Streinu and Theran characterised generic rigidity of linearly constrained frameworks in $mathbb{R}^2$ in 2010. We obtain an analagous characterisation for generic global rigidity in $mathbb{R}^2$. More precisely we show that a generic linearly constrained framework in $mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and `balanced. For generic frameworks which are not balanced, we determine the precise number of solutions to the constraint system whenever the underlying rigidity matroid of the given framework is connected. We also obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $mathbb{R}^d$.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther an in 2010. We will extend their characterisation to the case when $dgeq 3$ and each vertex is constrained to lie in an affine subspace of dimension $t$, when $t=1,2$ and also when $tgeq 3$ and $dgeq t(t-1)$. We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a $d$-dimensional body-bar framework with a given set of linear constraints.
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive constru ction of circuits in the simple $(2,2)$-sparse matroid, and a characterisation of rigidity for generic frameworks on the cylinder when a single designated vertex is allowed to move off the cylinder.
149 - Bill Jackson , J. C. Owen 2014
A 2-dimensional point-line framework is a collection of points and lines in the plane which are linked by pairwise constraints that fix some angles between pairs of lines and also some point-line and point-point distances. It is rigid if every contin uous motion of the points and lines which preserves the constraints results in a point-line framework which can be obtained from the initial framework by a translation or a rotation. We characterise when a generic point-line framework is rigid. Our characterisation gives rise to a polynomial algorithm for solving this decision problem.
We give a short proof of a result of Jordan and Tanigawa that a 4-connected graph which has a spanning planar triangulation as a proper subgraph is generically globally rigid in R^3. Our proof is based on a new sufficient condition for the so called vertex splitting operation to preserve generic global rigidity in R^d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا