ﻻ يوجد ملخص باللغة العربية
We study mean field portfolio games in incomplete markets with random market parameters, where each player is concerned with not only her own wealth but also the relative performance to her competitors. We use the martingale optimality principle approach to characterize the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we get the Nash equilibrium in closed form. Moreover, when all the market parameters become time-independent, we revisit the games in [21] and our analysis shows that nonconstant equilibria do not exist in $L^infty$, and the constant equilibrium obtained in [21] is unique in $L^infty$, not only in the space of constant equilibria.
Solar Renewable Energy Certificate (SREC) markets are a market-based system that incentivizes solar energy generation. A regulatory body imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them w
Even when confronted with the same data, agents often disagree on a model of the real-world. Here, we address the question of how interacting heterogenous agents, who disagree on what model the real-world follows, optimize their trading actions. The
We consider the problem of optimal portfolio selection under forward investment performance criteria in an incomplete market. The dynamics of the prices of the traded assets depend on a pair of stochastic factors, namely, a slow factor (e.g. a macroe
We analyze a family of portfolio management problems under relative performance criteria, for fund managers having CARA or CRRA utilities and trading in a common investment horizon in log-normal markets. We construct explicit constant equilibrium str
In this paper, we propose a new class of optimization problems, which maximize the terminal wealth and accumulated consumption utility subject to a mean variance criterion controlling the final risk of the portfolio. The multiple-objective optimizati