ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Based Proximity Matrix Factorization for Node Embedding

181   0   0.0 ( 0 )
 نشر من قبل Sibo Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Node embedding learns a low-dimensional representation for each node in the graph. Recent progress on node embedding shows that proximity matrix factorization methods gain superb performance and scale to large graphs with millions of nodes. Existing approaches first define a proximity matrix and then learn the embeddings that fit the proximity by matrix factorization. Most existing matrix factorization methods adopt the same proximity for different tasks, while it is observed that different tasks and datasets may require different proximity, limiting their representation power. Motivated by this, we propose {em Lemane}, a framework with trainable proximity measures, which can be learned to best suit the datasets and tasks at hand automatically. Our method is end-to-end, which incorporates differentiable SVD in the pipeline so that the parameters can be trained via backpropagation. However, this learning process is still expensive on large graphs. To improve the scalability, we train proximity measures only on carefully subsampled graphs, and then apply standard proximity matrix factorization on the original graph using the learned proximity. Note that, computing the learned proximities for each pair is still expensive for large graphs, and existing techniques for computing proximities are not applicable to the learned proximities. Thus, we present generalized push techniques to make our solution scalable to large graphs with millions of nodes. Extensive experiments show that our proposed solution outperforms existing solutions on both link prediction and node classification tasks on almost all datasets.



قيم البحث

اقرأ أيضاً

Graph neural networks have attracted wide attentions to enable representation learning of graph data in recent works. In complement to graph convolution operators, graph pooling is crucial for extracting hierarchical representation of graph data. How ever, most recent graph pooling methods still fail to efficiently exploit the geometry of graph data. In this paper, we propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology. Node proximity is obtained by harmonizing the kernel representation of topology information and node features. Implicit structure-aware kernel representation of topology information allows efficient graph pooling without explicit eigendecomposition of the graph Laplacian. Similarities of node signals are adaptively evaluated with the combination of the affine transformation and kernel trick using the Gaussian RBF function. Experimental results demonstrate that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
Deep learning models have become state of the art for natural language processing (NLP) tasks, however deploying these models in production system poses significant memory constraints. Existing compression methods are either lossy or introduce signif icant latency. We propose a compression method that leverages low rank matrix factorization during training,to compress the word embedding layer which represents the size bottleneck for most NLP models. Our models are trained, compressed and then further re-trained on the downstream task to recover accuracy while maintaining the reduced size. Empirically, we show that the proposed method can achieve 90% compression with minimal impact in accuracy for sentence classification tasks, and outperforms alternative methods like fixed-point quantization or offline word embedding compression. We also analyze the inference time and storage space for our method through FLOP calculations, showing that we can compress DNN models by a configurable ratio and regain accuracy loss without introducing additional latency compared to fixed point quantization. Finally, we introduce a novel learning rate schedule, the Cyclically Annealed Learning Rate (CALR), which we empirically demonstrate to outperform other popular adaptive learning rate algorithms on a sentence classification benchmark.
Learning by integrating multiple heterogeneous data sources is a common requirement in many tasks. Collective Matrix Factorization (CMF) is a technique to learn shared latent representations from arbitrary collections of matrices. It can be used to s imultaneously complete one or more matrices, for predicting the unknown entries. Classical CMF methods assume linearity in the interaction of latent factors which can be restrictive and fails to capture complex non-linear interactions. In this paper, we develop the first deep-learning based method, called dCMF, for unsupervised learning of multiple shared representations, that can model such non-linear interactions, from an arbitrary collection of matrices. We address optimization challenges that arise due to dependencies between shared representations through Multi-Task Bayesian Optimization and design an acquisition function adapted for collective learning of hyperparameters. Our experiments show that dCMF significantly outperforms previous CMF algorithms in integrating heterogeneous data for predictive modeling. Further, on two tasks - recommendation and prediction of gene-disease association - dCMF outperforms state-of-the-art matrix completion algorithms that can utilize auxiliary sources of information.
We present a general-purpose data compression algorithm, Regularized L21 Semi-NonNegative Matrix Factorization (L21 SNF). L21 SNF provides robust, parts-based compression applicable to mixed-sign data for which high fidelity, individualdata point rec onstruction is paramount. We derive a rigorous proof of convergenceof our algorithm. Through experiments, we show the use-case advantages presentedby L21 SNF, including application to the compression of highly overdeterminedsystems encountered broadly across many general machine learning processes.
182 - Jim Jing-Yan Wang , Xin Gao 2014
Inthischapterwediscusshowtolearnanoptimalmanifoldpresentationto regularize nonegative matrix factorization (NMF) for data representation problems. NMF,whichtriestorepresentanonnegativedatamatrixasaproductoftwolowrank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent study shows that lots of data distributions have manifold structures, and we should respect the manifold structure when the data are represented. Recently, manifold regularized NMF used a nearest neighbor graph to regulate the learning of factorization parameter matrices and has shown its advantage over traditional NMF methods for data representation problems. However, how to construct an optimal graph to present the manifold prop- erly remains a difficultproblem due to the graph modelselection, noisy features, and nonlinear distributed data. In this chapter, we introduce three effective methods to solve these problems of graph construction for manifold regularized NMF. Multiple graph learning is proposed to solve the problem of graph model selection, adaptive graph learning via feature selection is proposed to solve the problem of constructing a graph from noisy features, while multi-kernel learning-based graph construction is used to solve the problem of learning a graph from nonlinearly distributed data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا