ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Domain Adaptation

68   0   0.0 ( 0 )
 نشر من قبل Yu Mitsuzumi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many variants of unsupervised domain adaptation (UDA) problems have been proposed and solved individually. Its side effect is that a method that works for one variant is often ineffective for or not even applicable to another, which has prevented practical applications. In this paper, we give a general representation of UDA problems, named Generalized Domain Adaptation (GDA). GDA covers the major variants as special cases, which allows us to organize them in a comprehensive framework. Moreover, this generalization leads to a new challenging setting where existing methods fail, such as when domain labels are unknown, and class labels are only partially given to each domain. We propose a novel approach to the new setting. The key to our approach is self-supervised class-destructive learning, which enables the learning of class-invariant representations and domain-adversarial classifiers without using any domain labels. Extensive experiments using three benchmark datasets demonstrate that our method outperforms the state-of-the-art UDA methods in the new setting and that it is competitive in existing UDA variations as well.



قيم البحث

اقرأ أيضاً

We propose associative domain adaptation, a novel technique for end-to-end domain adaptation with neural networks, the task of inferring class labels for an unlabeled target domain based on the statistical properties of a labeled source domain. Our t raining scheme follows the paradigm that in order to effectively derive class labels for the target domain, a network should produce statistically domain invariant embeddings, while minimizing the classification error on the labeled source domain. We accomplish this by reinforcing associations between source and target data directly in embedding space. Our method can easily be added to any existing classification network with no structural and almost no computational overhead. We demonstrate the effectiveness of our approach on various benchmarks and achieve state-of-the-art results across the board with a generic convolutional neural network architecture not specifically tuned to the respective tasks. Finally, we show that the proposed association loss produces embeddings that are more effective for domain adaptation compared to methods employing maximum mean discrepancy as a similarity measure in embedding space.
In visual domain adaptation (DA), separating the domain-specific characteristics from the domain-invariant representations is an ill-posed problem. Existing methods apply different kinds of priors or directly minimize the domain discrepancy to addres s this problem, which lack flexibility in handling real-world situations. Another research pipeline expresses the domain-specific information as a gradual transferring process, which tends to be suboptimal in accurately removing the domain-specific properties. In this paper, we address the modeling of domain-invariant and domain-specific information from the heuristic search perspective. We identify the characteristics in the existing representations that lead to larger domain discrepancy as the heuristic representations. With the guidance of heuristic representations, we formulate a principled framework of Heuristic Domain Adaptation (HDA) with well-founded theoretical guarantees. To perform HDA, the cosine similarity scores and independence measurements between domain-invariant and domain-specific representations are cast into the constraints at the initial and final states during the learning procedure. Similar to the final condition of heuristic search, we further derive a constraint enforcing the final range of heuristic network output to be small. Accordingly, we propose Heuristic Domain Adaptation Network (HDAN), which explicitly learns the domain-invariant and domain-specific representations with the above mentioned constraints. Extensive experiments show that HDAN has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA. The code is available at https://github.com/cuishuhao/HDA.
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain adaptation remains largely underexp lored. In this paper, we propose to extend contrastive learning to a new domain adaptation setting, a particular situation occurring where the similarity is learned and deployed on samples following different probability distributions without access to labels. Contrastive learning learns by comparing and contrasting positive and negative pairs of samples in an unsupervised setting without access to source and target labels. We have developed a variation of a recently proposed contrastive learning framework that helps tackle the domain adaptation problem, further identifying and removing possible negatives similar to the anchor to mitigate the effects of false negatives. Extensive experiments demonstrate that the proposed method adapts well, and improves the performance on the downstream domain adaptation task.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
135 - Weikai Li , Songcan Chen 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا