ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous Flattening of All Polyhedral Manifolds using Countably Infinite Creases

119   0   0.0 ( 0 )
 نشر من قبل Erik Demaine
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that any finite polyhedral manifold in 3D can be continuously flattened into 2D while preserving intrinsic distances and avoiding crossings, answering a 19-year-old open problem, if we extend standard folding models to allow for countably infinite creases. The most general cases previously known to be continuously flattenable were convex polyhedra and semi-orthogonal polyhedra. For non-orientable manifolds, even the existence of an instantaneous flattening (flat folded state) is a new result. Our solution extends a method for flattening semi-orthogonal polyhedra: slice the polyhedron along parallel planes and flatten the polyhedral strips between consecutive planes. We adapt this approach to arbitrary nonconvex polyhedra by generalizing strip flattening to nonorthogonal corners and slicing along a countably infinite number of parallel planes, with slices densely approaching every vertex of the manifold. We also show that the area of the polyhedron that needs to support moving creases (which are necessary for closed polyhedra by the Bellows Theorem) can be made arbitrarily small.



قيم البحث

اقرأ أيضاً

This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques or iginating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inference
We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in $mathbb{R}^3$. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains $K_5$, $K_{5,81}$, or any nonplanar $3$-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, $K_{4,4}$, and $K_{3,5}$ can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable $n$-vertex graphs is in $Omega(n log n)$. From the non-realizability of $K_{5,81}$, we obtain that any realizable $n$-vertex graph has $O(n^{9/5})$ edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.
We describe a general family of curved-crease folding tessellations consisting of a repeating lens motif formed by two convex curved arcs. The third author invented the first such design in 1992, when he made both a sketch of the crease pattern and a vinyl model (pictured below). Curve fitting suggests that this initial design used circular arcs. We show that in fact the curve can be chosen to be any smooth convex curve without inflection point. We identify the ruling configuration through qualitative properties that a curved folding satisfies, and prove that the folded form exists with no additional creases, through the use of differential geometry.
We study a class of countably-infinite-dimensional linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined spaces of measures. The optimal value, optimal points, and minimal points of these CILPs can be approximated b y solving finite-dimensional linear programs. We show how to construct finite-dimensional programs that lead to approximations with easy-to-evaluate error bounds, and we prove that the errors converge to zero as the size of the finite-dimensional programs approaches that of the original problem. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov~chains.
We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced provided the transition functions are bi-Lipschitz with a constant close to 1, and the sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the ouput complex is also a Delaunay triangulation of its vertices with respect to this piecewise flat metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا