Kekule spiral order at all nonzero integer fillings in twisted bilayer graphene


الملخص بالإنكليزية

We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a comprehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the incommensurate Kekule spiral (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moire translation symmetries, but preserves a modified translation symmetry $hat{T}$ -- which simultaneously shifts the spatial coordinates and rotates the $U(1)$ angle which characterizes the spontaneous inter-valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.

تحميل البحث