ﻻ يوجد ملخص باللغة العربية
Image deblurring has seen a great improvement with the development of deep neural networks. In practice, however, blurry images often suffer from additional degradations such as downscaling and compression. To address these challenges, we propose an Enhanced Deep Pyramid Network (EDPN) for blurry image restoration from multiple degradations, by fully exploiting the self- and cross-scale similarities in the degraded image.Specifically, we design two pyramid-based modules, i.e., the pyramid progressive transfer (PPT) module and the pyramid self-attention (PSA) module, as the main components of the proposed network. By taking several replicated blurry images as inputs, the PPT module transfers both self- and cross-scale similarity information from the same degraded image in a progressive manner. Then, the PSA module fuses the above transferred features for subsequent restoration using self- and spatial-attention mechanisms. Experimental results demonstrate that our method significantly outperforms existing solutions for blurry image super-resolution and blurry image deblocking. In the NTIRE 2021 Image Deblurring Challenge, EDPN achieves the best PSNR/SSIM/LPIPS scores in Track 1 (Low Resolution) and the best SSIM/LPIPS scores in Track 2 (JPEG Artifacts).
Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods
Convolutional neural network has recently achieved great success for image restoration (IR) and also offered hierarchical features. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality
Local and non-local attention-based methods have been well studied in various image restoration tasks while leading to promising performance. However, most of the existing methods solely focus on one type of attention mechanism (local or non-local).
Recent advancements in deep neural networks have made remarkable leap-forwards in dense image prediction. However, the issue of feature alignment remains as neglected by most existing approaches for simplicity. Direct pixel addition between upsampled
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these tech