ﻻ يوجد ملخص باللغة العربية
The supernova remnant (SNR) 3C 397 is thought to originate from a Type Ia supernova (SN Ia) explosion of a near-Chandrasekhar-mass ($M_{rm Ch}$) progenitor, based on the enhanced abundances of Mn and Ni revealed by previous X-ray study with Suzaku. Here we report follow-up XMM-Newton observations of this SNR, conducted with the aim of investigating the detailed spatial distribution of the Fe-peak elements. We have discovered an ejecta clump with extremely high abundances of Ti and Cr, in addition to Mn, Fe, and Ni, in the southern part of the SNR. The Fe mass of this ejecta clump is estimated to be $sim$ 0.06 $M_{odot}$, under the assumption of a typical Fe yield for SNe Ia (i.e., $sim$ 0.8 $M_{odot}$). The observed mass ratios among the Fe-peak elements and Ti require substantial neutronization that is achieved only in the innermost regions of a near-$M_{rm Ch}$ SN Ia with a central density of $rho_c sim 5 times 10^9$ g cm$^{-3}$, significantly higher than typically assumed for standard near-$M_{rm Ch}$ SNe Ia ($rho_c sim 2 times 10^9$ g cm$^{-3}$). The overproduction of the neutron-rich isotopes (e.g., $^{50}$Ti and $^{54}$Cr) is significant in such high-$rho_c$ SNe Ia, with respect to the solar composition. Therefore, if 3C 397 is a typical high-$rho_c$ near-$M_{rm Ch}$ SN Ia remnant, the solar abundances of these isotopes could be reproduced by the mixture of the high- and low-$rho_c$ near-$M_{rm Ch}$ and sub-$M_{rm Ch}$ Type Ia events, with $lesssim$ 20 % being high-$rho_c$ near-$M_{rm Ch}$.
The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemi
We present a 190 ks observation of the Galactic supernova remnant (SNR) G306.3-0.9 with Suzaku. To study ejecta properties of this possible Type Ia SNR, the absolute energy scale at the Fe-K band was calibrated to a level of uncertainty less than 10
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged
Mixing above the proto-neutron star is believed to play an important role in the supernova engine, and this mixing results in a supernova explosion with asymmetries. Elements produced in the innermost ejecta, e.g., ${}^{56}$Ni and ${}^{44}$Ti, provid
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger t