ترغب بنشر مسار تعليمي؟ اضغط هنا

Balanced Knowledge Distillation for Long-tailed Learning

305   0   0.0 ( 0 )
 نشر من قبل Shaoyu Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep models trained on long-tailed datasets exhibit unsatisfactory performance on tail classes. Existing methods usually modify the classification loss to increase the learning focus on tail classes, which unexpectedly sacrifice the performance on head classes. In fact, this scheme leads to a contradiction between the two goals of long-tailed learning, i.e., learning generalizable representations and facilitating learning for tail classes. In this work, we explore knowledge distillation in long-tailed scenarios and propose a novel distillation framework, named Balanced Knowledge Distillation (BKD), to disentangle the contradiction between the two goals and achieve both simultaneously. Specifically, given a vanilla teacher model, we train the student model by minimizing the combination of an instance-balanced classification loss and a class-balanced distillation loss. The former benefits from the sample diversity and learns generalizable representation, while the latter considers the class priors and facilitates learning mainly for tail classes. The student model trained with BKD obtains significant performance gain even compared with its teacher model. We conduct extensive experiments on several long-tailed benchmark datasets and demonstrate that the proposed BKD is an effective knowledge distillation framework in long-tailed scenarios, as well as a new state-of-the-art method for long-tailed learning. Code is available at https://github.com/EricZsy/BalancedKnowledgeDistillation .



قيم البحث

اقرأ أيضاً

Real-world imagery is often characterized by a significant imbalance of the number of images per class, leading to long-tailed distributions. An effective and simple approach to long-tailed visual recognition is to learn feature representations and a classifier separately, with instance and class-balanced sampling, respectively. In this work, we introduce a new framework, by making the key observation that a feature representation learned with instance sampling is far from optimal in a long-tailed setting. Our main contribution is a new training method, referred to as Class-Balanced Distillation (CBD), that leverages knowledge distillation to enhance feature representations. CBD allows the feature representation to evolve in the second training stage, guided by the teacher learned in the first stage. The second stage uses class-balanced sampling, in order to focus on under-represented classes. This framework can naturally accommodate the usage of multiple teachers, unlocking the information from an ensemble of models to enhance recognition capabilities. Our experiments show that the proposed technique consistently outperforms the state of the art on long-tailed recognition benchmarks such as ImageNet-LT, iNaturalist17 and iNaturalist18. The experiments also show that our method does not sacrifice the accuracy of head classes to improve the performance of tail classes, unlike most existing work.
81 - Lie Ju , Xin Wang , Lin Wang 2021
In the real world, medical datasets often exhibit a long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples), which results in a challenging imbalance learning scenario. For example, ther e are estimated more than 40 different kinds of retinal diseases with variable morbidity, however with more than 30+ conditions are very rare from the global patient cohorts, which results in a typical long-tailed learning problem for deep learning-based screening models. In this study, we propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge, such as regions and phenotype information. It enforces the model to focus on learning the subset-specific knowledge. More specifically, there are some relational classes that reside in the fixed retinal regions, or some common pathological features are observed in both the majority and minority conditions. With those subsets learnt teacher models, then we are able to distill the multiple teacher models into a unified model with weighted knowledge distillation loss. The proposed framework proved to be effective for the long-tailed retinal diseases recognition task. The experimental results on two different datasets demonstrate that our method is flexible and can be easily plugged into many other state-of-the-art techniques with significant improvements.
145 - Bo Liu , Haoxiang Li , Hao Kang 2021
The problem of long-tailed recognition, where the number of examples per class is highly unbalanced, is considered. While training with class-balanced sampling has been shown effective for this problem, it is known to over-fit to few-shot classes. It is hypothesized that this is due to the repeated sampling of examples and can be addressed by feature space augmentation. A new feature augmentation strategy, EMANATE, based on back-tracking of features across epochs during training, is proposed. It is shown that, unlike class-balanced sampling, this is an adversarial augmentation strategy. A new sampling procedure, Breadcrumb, is then introduced to implement adversarial class-balanced sampling without extra computation. Experiments on three popular long-tailed recognition datasets show that Breadcrumb training produces classifiers that outperform existing solutions to the problem.
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively allevia te the imbalance issue, but might be a risk of over-fitting tail classes. The recent decoupling method overcomes over-fitting issues by using a multi-stage training scheme, yet, it is still incapable of capturing tail class information in the feature learning stage. In this paper, we show that soft label can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition. The intrinsic relation between classes embodied by soft labels turns out to be helpful for long-tailed recognition by transferring knowledge from head to tail classes. Specifically, we propose a conceptually simple yet particularly effective multi-stage training scheme, termed as Self Supervised to Distillation (SSD). This scheme is composed of two parts. First, we introduce a self-distillation framework for long-tailed recognition, which can mine the label relation automatically. Second, we present a new distillation label generation module guided by self-supervision. The distilled labels integrate information from both label and data domains that can model long-tailed distribution effectively. We conduct extensive experiments and our method achieves the state-of-the-art results on three long-tailed recognition benchmarks: ImageNet-LT, CIFAR100-LT and iNaturalist 2018. Our SSD outperforms the strong LWS baseline by from $2.7%$ to $4.5%$ on various datasets. The code is available at https://github.com/MCG-NJU/SSD-LT.
Deep classifiers have achieved great success in visual recognition. However, real-world data is long-tailed by nature, leading to the mismatch between training and testing distributions. In this report, we introduce Balanced Activation (Balanced Soft max and Balanced Sigmoid), an elegant unbiased, and simple extension of Sigmoid and Softmax activation function, to accommodate the label distribution shift between training and testing in object detection. We derive the generalization bound for multiclass Softmax regression and show our loss minimizes the bound. In our experiments, we demonstrate that Balanced Activation generally provides ~3% gain in terms of mAP on LVIS-1.0 and outperforms the current state-of-the-art methods without introducing any extra parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا