ﻻ يوجد ملخص باللغة العربية
Deep models trained on long-tailed datasets exhibit unsatisfactory performance on tail classes. Existing methods usually modify the classification loss to increase the learning focus on tail classes, which unexpectedly sacrifice the performance on head classes. In fact, this scheme leads to a contradiction between the two goals of long-tailed learning, i.e., learning generalizable representations and facilitating learning for tail classes. In this work, we explore knowledge distillation in long-tailed scenarios and propose a novel distillation framework, named Balanced Knowledge Distillation (BKD), to disentangle the contradiction between the two goals and achieve both simultaneously. Specifically, given a vanilla teacher model, we train the student model by minimizing the combination of an instance-balanced classification loss and a class-balanced distillation loss. The former benefits from the sample diversity and learns generalizable representation, while the latter considers the class priors and facilitates learning mainly for tail classes. The student model trained with BKD obtains significant performance gain even compared with its teacher model. We conduct extensive experiments on several long-tailed benchmark datasets and demonstrate that the proposed BKD is an effective knowledge distillation framework in long-tailed scenarios, as well as a new state-of-the-art method for long-tailed learning. Code is available at https://github.com/EricZsy/BalancedKnowledgeDistillation .
Real-world imagery is often characterized by a significant imbalance of the number of images per class, leading to long-tailed distributions. An effective and simple approach to long-tailed visual recognition is to learn feature representations and a
In the real world, medical datasets often exhibit a long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples), which results in a challenging imbalance learning scenario. For example, ther
The problem of long-tailed recognition, where the number of examples per class is highly unbalanced, is considered. While training with class-balanced sampling has been shown effective for this problem, it is known to over-fit to few-shot classes. It
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively allevia
Deep classifiers have achieved great success in visual recognition. However, real-world data is long-tailed by nature, leading to the mismatch between training and testing distributions. In this report, we introduce Balanced Activation (Balanced Soft