ﻻ يوجد ملخص باللغة العربية
We study the possibility of probing new physics accounting for $(g-2)_mu$ anomaly and gravitational waves with pulsar timing array measurements. The model we consider is either a light gauge boson or neutral scalar interacting with muons. We show that the parameter spaces of dark $U(1)$ model with kinetic mixing explaining $(g-2)_mu$ anomaly can realize a first-order phase transition, and the yield-produced gravitational wave may address the common red noise observed in the NANOGrav 12.5-yr dataset.
The direct detection of gravitational waves offers an exciting new window onto our Universe. At the same time, multiple observational evidence and theoretical considerations motivate the presence of physics beyond the Standard Model. In this thesis,
In this paper we analyze the spectrum of the primordial gravitational waves (GWs) predicted in the Standard Model*Axion*Seesaw*Higgs portal inflation (SMASH) model, which was proposed as a minimal extension of the Standard Model that addresses five f
In frames of agreement to consider the annihilation of electron-positron pair to hadrons cross section to be including the virtual photon polarization effects a new formulation of hadron contribution to muon anomalous magnetic moment is suggested. It
Multi-peaked spectra of the primordial gravitational waves are considered as a phenomenologically relevant source of information about the dynamics of sequential phase transitions in the early Universe. In particular, such signatures trace back to sp
In this paper we offer an explanation of the $(g-2)_mu$ discrepancy in a R-parity conserving supersymmetric model with right-handed neutrinos in which the right-handed sneutrino is a viable dark matter candidate. We find that our scenario satisfies a