ﻻ يوجد ملخص باللغة العربية
We consider the Stokes-transport system, a model for the evolution of an incompressible viscous fluid with inhomogeneous density. This equation was already known to be globally well-posed for any $L^1cap L^infty$ initial density with finite first moment in $mathbb{R}^3$. We show that similar results hold on different domain types. We prove that the system is globally well-posed for $L^infty$ initial data in bounded domains of $mathbb{R}^2$ and $mathbb{R}^3$ as well as in the infinite strip $mathbb{R}times(0,1)$. These results contrast with the ill-posedness of a similar problem, the incompressible porous medium equation, for which uniqueness is known to fail for such a density regularity.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural
We consider the compressible Navier-Stokes-Korteweg system describing the dynamics of a liquid-vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the
The paper deals with the Navier-Stokes equations in a strip in the class of spatially non-decaing (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier-S
Existence and uniqueness of solutions to the Navier-Stokes equation in dimension two with forces in the space $L^q( (0,T); mathbf{W}^{-1,p}(Omega))$ for $p$ and $q$ in appropriate parameter ranges are proven. The case of spatially measured-valued inh
The Cauchy problem for the Zakharov system in four dimensions is considered. Some new well-posedness results are obtained. For small initial data, global well-posedness and scattering results are proved, including the case of initial data in the ener