ﻻ يوجد ملخص باللغة العربية
Starting from the Bonn potential, relativistic Brueckner-Hartree-Fock (RBHF) equations are solved for nuclear matter in the full Dirac space, which provides a unique way to determine the single-particle potentials and avoids the approximations applied in the RBHF calculations in the Dirac space with positive-energy states (PESs) only. The uncertainties of the RBHF calculations in the Dirac space with PESs only are investigated, and the importance of the RBHF calculations in the full Dirac space is demonstrated. In the RBHF calculations in the full Dirac space, the empirical saturation properties of symmetric nuclear matter are reproduced, and the obtained equation of state agrees with the results based on the relativistic Greens function approach up to the saturation density.
On the way of a microscopic derivation of covariant density functionals, the first complete solution of the relativistic Brueckner-Hartree-Fock (RBHF) equations is presented for symmetric nuclear matter. In most of the earlier investigations, the $G$
Brueckner-Hartree-Fock theory allows to derive the $G$-matrix as an effective interaction between nucleons in the nuclear medium. It depends on the center of mass momentum $bm{P}$ of the two particles and on the two relative momenta $bm{q}$ and $bm{q
We investigate the appearance of di-neutron bound states in pure neutron matter within the Brueckner-Hartree-Fock approach at zero temperature. We consider Argonne $v_{18}$ and Paris bare interactions as well as chiral two- and three-nucleon forces.
The isospin dependence of the nucleon effective mass is investigated in the framework of the Dirac Brueckner-Hartree-Fock (DBHF) approach. The definition of nucleon scalar and vector effective masses in the relativistic approach is clarified. Only th
Tensor force is identified in each meson-nucleon coupling in the relativistic Hartree-Fock theory. It is found that all the meson-nucleon couplings, except the $sigma$-scalar one, give rise to the tensor force. The effects of tensor force on various