ﻻ يوجد ملخص باللغة العربية
We study the structural evolution of isolated star-forming galaxies in the Illustris TNG100-1 hydrodynamical simulation, with a focus on investigating the growth of the central core density within 2 kpc ($Sigma_{*,2kpc}$) in relation to total stellar mass ($M_*$) at z < 0.5. First, we show that several observational trends in the $Sigma_{*,2kpc}$-$M_*$ plane are qualitatively reproduced in IllustrisTNG, including the distributions of AGN, star forming galaxies, quiescent galaxies, and radial profiles of stellar age, sSFR, and metallicity. We find that galaxies with dense cores evolve parallel to the $Sigma_{*,2kpc}$-$M_*$ relation, while galaxies with diffuse cores evolve along shallower trajectories. We investigate possible drivers of rapid growth in $Sigma_{*,2kpc}$ compared to $M_*$. Both the current sSFR gradient and the BH accretion rate are indicators of past core growth, but are not predictors of future core growth. Major mergers (although rare in our sample; $sim$10%) cause steeper core growth, except for high mass ($M_*$ >$sim$ $10^{10} M_{odot}$) mergers, which are mostly dry. Disc instabilities, as measured by the fraction of mass with Toomre Q < 2, are not predictive of rapid core growth. Instead, rapid core growth results in more stable discs. The cumulative black hole feedback history sets the maximum rate of core growth, preventing rapid growth in high-mass galaxies ($M_*$ >$sim$ $10^{9.5} M_{odot}$). For massive galaxies the total specific angular momentum of accreting gas is the most important predictor of future core growth. Our results suggest that the angular momentum of accreting gas controls the slope, width and zero-point evolution of the $Sigma_{*,2kpc}$-$M_*$ relation.
We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (HI and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the HI and H2 content of IllustrisTNG ga
We investigate the formation history of massive disk galaxies in hydro-dynamical simulation--the IllustrisTNG, to study why massive disk galaxies survive through cosmic time. 83 galaxies in the simulation are selected with M$_{*,z=0}$ $>8times10^{10}
We analyze the optical morphologies of galaxies in the IllustrisTNG simulation at $zsim0$ with a Convolutional Neural Network trained on visual morphologies in the Sloan Digital Sky Survey. We generate mock SDSS images of a mass complete sample of $s
We present 0.2arcsec-resolution Atacama Large Millimeter/submillimeter Array observations at 870 $mu$m in a stellar mass-selected sample of 85 massive ($M_mathrm{star}>10^{11}~M_odot$) star-forming galaxies (SFGs) at z=1.9-2.6 in the 3D-HST/CANDELS f
We present the first comparison of observed stellar continuum spectra of high-redshift galaxies and mock galaxy spectra generated from hydrodynamical simulations. The mock spectra are produced from the IllustrisTNG TNG100 simulation combined with ste