ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Robustness in Teacher-Student Setting: A New Perspective

61   0   0.0 ( 0 )
 نشر من قبل Zhuolin Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial examples have appeared as a ubiquitous property of machine learning models where bounded adversarial perturbation could mislead the models to make arbitrarily incorrect predictions. Such examples provide a way to assess the robustness of machine learning models as well as a proxy for understanding the model training process. Extensive studies try to explain the existence of adversarial examples and provide ways to improve model robustness (e.g. adversarial training). While they mostly focus on models trained on datasets with predefined labels, we leverage the teacher-student framework and assume a teacher model, or oracle, to provide the labels for given instances. We extend Tian (2019) in the case of low-rank input data and show that student specialization (trained student neuron is highly correlated with certain teacher neuron at the same layer) still happens within the input subspace, but the teacher and student nodes could differ wildly out of the data subspace, which we conjecture leads to adversarial examples. Extensive experiments show that student specialization correlates strongly with model robustness in different scenarios, including student trained via standard training, adversarial training, confidence-calibrated adversarial training, and training with robust feature dataset. Our studies could shed light on the future exploration about adversarial examples, and enhancing model robustness via principled data augmentation.



قيم البحث

اقرأ أيضاً

82 - Fei Ye , Adrian G. Bors 2021
A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remem ber the databases learnt in the past. We propose a novel lifelong learning methodology by employing a Teacher-Student network framework. While the Student module is trained with a new given database, the Teacher module would remind the Student about the information learnt in the past. The Teacher, implemented by a Generative Adversarial Network (GAN), is trained to preserve and replay past knowledge corresponding to the probabilistic representations of previously learn databases. Meanwhile, the Student module is implemented by a Variational Autoencoder (VAE) which infers its latent variable representation from both the output of the Teacher module as well as from the newly available database. Moreover, the Student module is trained to capture both continuous and discrete underlying data representations across different domains. The proposed lifelong learning framework is applied in supervised, semi-supervised and unsupervised training. The code is available~: url{https://github.com/dtuzi123/Lifelong-Teacher-Student-Network-Learning}
84 - Kun Qian , Wei Wei , Zhou Yu 2021
Numerous new dialog domains are being created every day while collecting data for these domains is extremely costly since it involves human interactions. Therefore, it is essential to develop algorithms that can adapt to different domains efficiently when building data-driven dialog models. The most recent researches on domain adaption focus on giving the model a better initialization, rather than optimizing the adaptation process. We propose an efficient domain adaptive task-oriented dialog system model, which incorporates a meta-teacher model to emphasize the different impacts between generated tokens with respect to the context. We first train our base dialog model and meta-teacher model adversarially in a meta-learning setting on rich-resource domains. The meta-teacher learns to quantify the importance of tokens under different contexts across different domains. During adaptation, the meta-teacher guides the dialog model to focus on important tokens in order to achieve better adaptation efficiency. We evaluate our model on two multi-domain datasets, MultiWOZ and Google Schema-Guided Dialogue, and achieve state-of-the-art performance.
In humans and animals, curriculum learning -- presenting data in a curated order - is critical to rapid learning and effective pedagogy. Yet in machine learning, curricula are not widely used and empirically often yield only moderate benefits. This s tark difference in the importance of curriculum raises a fundamental theoretical question: when and why does curriculum learning help? In this work, we analyse a prototypical neural network model of curriculum learning in the high-dimensional limit, employing statistical physics methods. Curricula could in principle change both the learning speed and asymptotic performance of a model. To study the former, we provide an exact description of the online learning setting, confirming the long-standing experimental observation that curricula can modestly speed up learning. To study the latter, we derive performance in a batch learning setting, in which a network trains to convergence in successive phases of learning on dataset slices of varying difficulty. With standard training losses, curriculum does not provide generalisation benefit, in line with empirical observations. However, we show that by connecting different learning phases through simple Gaussian priors, curriculum can yield a large improvement in test performance. Taken together, our reduced analytical descriptions help reconcile apparently conflicting empirical results and trace regimes where curriculum learning yields the largest gains. More broadly, our results suggest that fully exploiting a curriculum may require explicit changes to the loss function at curriculum boundaries.
Recently, consistency-based methods have achieved state-of-the-art results in semi-supervised learning (SSL). These methods always involve two roles, an explicit or implicit teacher model and a student model, and penalize predictions under different perturbations by a consistency constraint. However, the weights of these two roles are tightly coupled since the teacher is essentially an exponential moving average (EMA) of the student. In this work, we show that the coupled EMA teacher causes a performance bottleneck. To address this problem, we introduce Dual Student, which replaces the teacher with another student. We also define a novel concept, stable sample, following which a stabilization constraint is designed for our structure to be trainable. Further, we discuss two variants of our method, which produce even higher performance. Extensive experiments show that our method improves the classification performance significantly on several main SSL benchmarks. Specifically, it reduces the error rate of the 13-layer CNN from 16.84% to 12.39% on CIFAR-10 with 1k labels and from 34.10% to 31.56% on CIFAR-100 with 10k labels. In addition, our method also achieves a clear improvement in domain adaptation.
109 - Anh Bui , Trung Le , He Zhao 2021
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the opportunity to `contrast between data and class representation in the latent space. In this paper, we investigate CL for improving model robustness using adversarial samples. We first designed and performed a comprehensive study to understand how adversarial vulnerability behaves in the latent space. Based on these empirical evidences, we propose an effective and efficient supervised contrastive learning to achieve model robustness against adversarial attacks. Moreover, we propose a new sample selection strategy that optimizes the positive/negative sets by removing redundancy and improving correlation with the anchor. Experiments conducted on benchmark datasets show that our Adversarial Supervised Contrastive Learning (ASCL) approach outperforms the state-of-the-art defenses by $2.6%$ in terms of the robust accuracy, whilst our ASCL with the proposed selection strategy can further gain $1.4%$ improvement with only $42.8%$ positives and $6.3%$ negatives compared with ASCL without a selection strategy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا