ﻻ يوجد ملخص باللغة العربية
The Ra EDM experiment uses a pair of high voltage electrodes to measure the atomic electric dipole moment of $^{225}$Ra. We use identical, plane-parallel electrodes with a primary high gradient surface of 200 mm$^2$ to generate reversible DC electric fields. Our statistical sensitivity is linearly proportional to the electric field strength in the electrode gap. We adapted surface decontamination and processing techniques from accelerator physics literature to chemical polish and clean a suite of newly fabricated large-grain niobium and grade-2 titanium electrodes. Three pairs of niobium electrodes and one pair of titanium electrodes were discharge-conditioned with a custom high voltage test station at electric field strengths as high as $+52.5$ kV/mm and $- 51.5$ kV/mm over electrode gap sizes ranging from 0.4 mm to 2.5 mm. One pair of large-grain niobium electrodes was discharge-conditioned and validated to operate at $pm 20$ kV/mm with steady-state leakage current $leq 25$ pA ($1sigma$) and a polarity-averaged $98 pm 19$ discharges per hour. These electrodes were installed in the Ra EDM experimental apparatus, replacing a copper electrode pair, and were revalidated to $pm 20$ kV/mm. The niobium electrodes perform at an electric field strength 3.1 times larger than the legacy copper electrodes and are ultimately limited by the maximum output of our 30 kV bipolar power supply.
We investigate the influence of the high voltage scheme elements on the stability of a detector based on a single $10times10$ cm$^2$ area GEM with respect to the secondary discharge occurrence. These violent events pose a major threat to the integrit
We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do no
We report on the Beam EDM experiment, which aims to employ a pulsed cold neutron beam to search for an electric dipole moment instead of the established use of storable ultracold neutrons. We present a brief overview of the basic measurement concept
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five tim
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced