ﻻ يوجد ملخص باللغة العربية
Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions. The major challenges involve noisy history contexts and especial prerequisites of commonsense knowledge that is unseen in the given material. Existing works mainly focus on context and response matching approaches. This work thus makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances and utilizing external knowledge to enhance the representation of context. We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension. In detail, our model first picks out the pivot utterances from the conversation history according to the semantic matching with the candidate response or question, if any. Besides, knowledge items related to the dialogue context are extracted from a knowledge graph as external knowledge. Then, the pivot utterances and the external knowledge are combined with a well-designed mechanism for refining predictions. Experimental results on four dialogue comprehension benchmark tasks show that our proposed model achieves great improvements on baselines. A series of empirical comparisons are conducted to show how our selection strategies and the extra knowledge injection influence the results.
Training machines to understand natural language and interact with humans is an elusive and essential task in the field of artificial intelligence. In recent years, a diversity of dialogue systems has been designed with the rapid development of deep
Multi-party multi-turn dialogue comprehension brings unprecedented challenges on handling the complicated scenarios from multiple speakers and criss-crossed discourse relationship among speaker-aware utterances. Most existing methods deal with dialog
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by trans
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for suc