ﻻ يوجد ملخص باللغة العربية
We study local conformational biases in the dynamics of {alpha}-synuclein by using all-atom simulations with explicit and implicit solvents. The biases are related to the frequency of the specific contact formation. In both approaches, the protein is intrinsically disordered, and its strongest bias is to make bend and turn local structures. The explicit-solvent conformations can be substantially more extended which allows for formation of transient trefoil knots, both deep and shallow, that may last for up to 5 {mu}s. The two-chain self-association events, both short- and long-lived, are dominated by formation of contacts in the central part of the sequence. This part tends to form helices when bound to a micelle.
Multicellular organisms consist of cells that interact via elaborate adhesion complexes. Desmosomes are membrane-associated adhesion complexes that mechanically tether the cytoskeletal intermediate filaments (IFs) between two adjacent cells, creating
We perform theoretical studies of stretching of 20 proteins with knots within a coarse grained model. The knots ends are found to jump to well defined sequential locations that are associated with sharp turns whereas in homopolymers they diffuse arou
We combined the genetic crossover, which is one of the operations of genetic algorithm, and replica-exchange method in parallel molecular dynamics simulations. The genetic crossover and replica-exchange method can search the global conformational spa
Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synucle
The conformational change of biological macromolecule is investigated from the point of quantum transition. A quantum theory on protein folding is proposed. Compared with other dynamical variables such as mobile electrons, chemical bonds and stretchi