ﻻ يوجد ملخص باللغة العربية
It has been recognized for some time that even for perfect conductors, the interaction Casimir entropy, due to quantum/thermal fluctuations, can be negative. This result was not considered problematic because it was thought that the self-entropies of the bodies would cancel this negative interaction entropy, yielding a total entropy that was positive. In fact, this cancellation seems not to occur. The positive self-entropy of a perfectly conducting sphere does indeed just cancel the negative interaction entropy of a system consisting of a perfectly conducting sphere and plate, but a model with weaker coupling in general possesses a regime where negative self-entropy appears. The physical meaning of this surprising result remains obscure. In this paper we re-examine these issues, using improved physical and mathematical techniques, partly based on the Abel-Plana formula, and present numerical results for arbitrary temperatures and couplings, which exhibit the same remarkable features.
In view of the current discussion on the subject, an effort is made to show very accurately both analytically and numerically how the Drude dispersive model, assuming the relaxation is nonzero at zero temperature (which is the case when impurities ar
We discuss the quantization of sound waves in a fluid with a linear dispersion relation and calculate the quantum density fluctuations of the fluid in several cases. These include a fluid in its ground state. In this case, we discuss the scattering c
We utilize Effective Field Theory(EFT) techniques to calculate the casimir torque on a cylindrical gear in the presence of a polarizable but neutral object. We present results for the energy and torque as a function of angle for a gear with multiple
Hard momentum cutoff is used for estimating IR/UV corrections to the Casimir force. In contrast to the power-law corrections arising from the IR cutoff, one will find the UV cutoff-dependent corrections to be exponentially suppressed. As a consequenc
We study the Casimir effect at finite temperature for a massless scalar field in the parallel plates geometry in N spatial dimensions, under various combinations of Dirichlet and Neumann boundary conditions on the plates. We show that in all these ca