ترغب بنشر مسار تعليمي؟ اضغط هنا

Leafy Automata for Higher-Order Concurrency

71   0   0.0 ( 0 )
 نشر من قبل Alex Dixon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Finitary Idealized Concurrent Algol (FICA) is a prototypical programming language combining functional, imperative, and concurrent computation. There exists a fully abstract game model of FICA, which in principle can be used to prove equivalence and safety of FICA programs. Unfortunately, the problems are undecidable for the whole language, and only very rudimentary decidable sub-languages are known. We propose leafy automata as a dedicated automata-theoretic formalism for representing the game semantics of FICA. The automata use an infinite alphabet with a tree structure. We show that the game semantics of any FICA term can be represented by traces of a leafy automaton. Conversely, the traces of any leafy automaton can be represented by a FICA term. Because of the close match with FICA, we view leafy automata as a promising starting point for finding decidable subclasses of the language and, more generally, to provide a new perspective on models of higher-order concurrent computation. Moreover, we identify a fragment of FICA that is amenable to verification by translation into a particular class of leafy automata. Using a locality property of the latter class, where communication between levels is restricted and every other level is bounded, we show that their emptiness problem is decidable by reduction to Petri net reachability.



قيم البحث

اقرأ أيضاً

112 - Jerome Jochems 2021
Higher-order constrained Horn clauses (HoCHC) are a semantically-invariant system of higher-order logic modulo theories. With semi-decidable unsolvability over a semi-decidable background theory, HoCHC is suitable for safety verification. Less is kno wn about its relation to larger classes of higher-order verification problems. Motivated by program equivalence, we introduce a coinductive version of HoCHC that enjoys a greatest model property. We define an encoding of higher-order recursion schemes (HoRS) into HoCHC logic programs. Correctness of this encoding reduces decidability of the open HoRS equivalence problem -- and, thus, the LambdaY-calculus Bohm tree equivalence problem -- to semi-decidability of coinductive HoCHC over a complete and decidable theory of trees.
Floyds Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenatio n and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.
129 - Fabrizio Montesi 2018
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session typ es and propositions in linear logic. Desirable properties such as type preservation under reductions and progress come for free from the metatheory of linear logic. We contribute to this research line by extending CP with code mobility. We generalise classical linear logic to capture higher-order (linear) reasoning on proofs, which yields a logical reconstruction of (a variant of) the Higher-Order pi-calculus (HOpi). The resulting calculus is called Classical Higher-Order Processes (CHOP). We explore the metatheory of CHOP, proving that its semantics enjoys type preservation and progress (terms do not get stuck). We also illustrate the expressivity of CHOP through examples, derivable syntax sugar, and an extension to multiparty sessions. Lastly, we define a translation from CHOP to CP, which encodes mobility of process code into reference passing.
134 - Adrien Boiret 2014
Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of horizontal determinism, starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.
A weight normalization procedure, commonly called pushing, is introduced for weighted tree automata (wta) over commutative semifields. The normalization preserves the recognized weighted tree language even for nondeterministic wta, but it is most use ful for bottom-up deterministic wta, where it can be used for minimization and equivalence testing. In both applications a careful selection of the weights to be redistributed followed by normalization allows a reduction of the general problem to the corresponding problem for bottom-up deterministic unweighted tree automata. This approach was already successfully used by Mohri and Eisner for the minimization of deterministic weighted string automata. Moreover, the new equivalence test for two wta $M$ and $M$ runs in time $mathcal O((lvert M rvert + lvert Mrvert) cdot log {(lvert Qrvert + lvert Qrvert)})$, where $Q$ and $Q$ are the states of $M$ and $M$, respectively, which improves the previously best run-time $mathcal O(lvert M rvert cdot lvert Mrvert)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا