ﻻ يوجد ملخص باللغة العربية
In this paper, we present LookOut, a novel autonomy system that perceives the environment, predicts a diverse set of futures of how the scene might unroll and estimates the trajectory of the SDV by optimizing a set of contingency plans over these future realizations. In particular, we learn a diverse joint distribution over multi-agent future trajectories in a traffic scene that covers a wide range of future modes with high sample efficiency while leveraging the expressive power of generative models. Unlike previous work in diverse motion forecasting, our diversity objective explicitly rewards sampling future scenarios that require distinct reactions from the self-driving vehicle for improved safety. Our contingency planner then finds comfortable and non-conservative trajectories that ensure safe reactions to a wide range of future scenarios. Through extensive evaluations, we show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset as well as safer and less-conservative motion plans in long-term closed-loop simulations when compared to current state-of-the-art models.
The motion planners used in self-driving vehicles need to generate trajectories that are safe, comfortable, and obey the traffic rules. This is usually achieved by two modules: behavior planner, which handles high-level decisions and produces a coars
Predicting agents future trajectories plays a crucial role in modern AI systems, yet it is challenging due to intricate interactions exhibited in multi-agent systems, especially when it comes to collision avoidance. To address this challenge, we prop
Constrained Iterative Linear Quadratic Regulator (CILQR), a variant of ILQR, has been recently proposed for motion planning problems of autonomous vehicles to deal with constraints such as obstacle avoidance and reference tracking. However, the previ
With the recent advancement of deep learning technology, data-driven approaches for autonomous car prediction and planning have achieved extraordinary performance. Nevertheless, most of these approaches follow a non-interactive prediction and plannin
Robots and self-driving vehicles face a number of challenges when navigating through real environments. Successful navigation in dynamic environments requires prioritizing subtasks and monitoring resources. Animals are under similar constraints. It h