ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Text CAPTCHAs Using Adversarial Examples

79   0   0.0 ( 0 )
 نشر من قبل Rulin Shao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images, which are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we design and apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarial training, data pre-processing and manual tagging.



قيم البحث

اقرأ أيضاً

We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datase ts real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.
Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse cross-entropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.
Deep learning models are known to be vulnerable not only to input-dependent adversarial attacks but also to input-agnostic or universal adversarial attacks. Dezfooli et al. cite{Dezfooli17,Dezfooli17anal} construct universal adversarial attack on a g iven model by looking at a large number of training data points and the geometry of the decision boundary near them. Subsequent work cite{Khrulkov18} constructs universal attack by looking only at test examples and intermediate layers of the given model. In this paper, we propose a simple universalization technique to take any input-dependent adversarial attack and construct a universal attack by only looking at very few adversarial test examples. We do not require details of the given model and have negligible computational overhead for universalization. We theoretically justify our universalization technique by a spectral property common to many input-dependent adversarial perturbations, e.g., gradients, Fast Gradient Sign Method (FGSM) and DeepFool. Using matrix concentration inequalities and spectral perturbation bounds, we show that the top singular vector of input-dependent adversarial directions on a small test sample gives an effective and simple universal adversarial attack. For VGG16 and VGG19 models trained on ImageNet, our simple universalization of Gradient, FGSM, and DeepFool perturbations using a test sample of 64 images gives fooling rates comparable to state-of-the-art universal attacks cite{Dezfooli17,Khrulkov18} for reasonable norms of perturbation.
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.
In this work we propose Energy Attack, a transfer-based black-box $L_infty$-adversarial attack. The attack is parameter-free and does not require gradient approximation. In particular, we first obtain white-box adversarial perturbations of a surrogat e model and divide these perturbations into small patches. Then we extract the unit component vectors and eigenvalues of these patches with principal component analysis (PCA). Base on the eigenvalues, we can model the energy distribution of adversarial perturbations. We then perform black-box attacks by sampling from the perturbation patches according to their energy distribution, and tiling the sampled patches to form a full-size adversarial perturbation. This can be done without the available access to victim models. Extensive experiments well demonstrate that the proposed Energy Attack achieves state-of-the-art performance in black-box attacks on various models and several datasets. Moreover, the extracted distribution is able to transfer among different model architectures and different datasets, and is therefore intrinsic to vision architectures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا