ﻻ يوجد ملخص باللغة العربية
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance on downstream cross-lingual tasks. This improvement stems from the learning of a large amount of monolingual and parallel corpora. While it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for the low-resource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to break the constraint of parallel corpus size on the model performance. Our key insight is to integrate the idea of back translation in the pre-training process. We generate pseudo-parallel sentences pairs on a monolingual corpus to enable the learning of semantic alignment between different languages, which enhances the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results on various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-t
Recent studies in zero-shot cross-lingual learning using multilingual models have falsified the previous hypothesis that shared vocabulary and joint pre-training are the keys to cross-lingual generalization. Inspired by this advancement, we introduce
Multilingual knowledge graphs (KGs), such as YAGO and DBpedia, represent entities in different languages. The task of cross-lingual entity alignment is to match entities in a source language with their counterparts in target languages. In this work,
In this paper, we propose to align sentence representations from different languages into a unified embedding space, where semantic similarities (both cross-lingual and monolingual) can be computed with a simple dot product. Pre-trained language mode
Reverse dictionary is the task to find the proper target word given the word description. In this paper, we tried to incorporate BERT into this task. However, since BERT is based on the byte-pair-encoding (BPE) subword encoding, it is nontrivial to m