ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution Dependent Stochastic Differential Equations

137   0   0.0 ( 0 )
 نشر من قبل Feng-Yu Wang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to their intrinsic link with nonlinear Fokker-Planck equations and many other applications, distribution dependent stochastic differential equations (DDSDEs for short) have been intensively investigated. In this paper we summarize some recent progresses in the study of DDSDEs, which include the correspondence of weak solutions and nonlinear Fokker-Planck equations, the well-posedness, regularity estimates, exponential ergodicity, long time large deviations, and comparison theorems.



قيم البحث

اقرأ أيضاً

146 - Feng-Yu Wang 2021
To characterize the Neumann problem for nonlinear Fokker-Planck equations, we investigate distribution dependent reflecting SDEs (DDRSDEs) in a domain. We first prove the well-posedness and establish functional inequalities for reflecting SDEs with s ingular drifts, then extend these results to DDRSDEs with singular or monotone coefficients, for which a general criterion deducing the well-posedness of DDRSDEs from that of reflecting SDEs is established. Moreover, three different types of exponential ergodicity are derived for DDRSDEs under dissipative, partially dissipative, and fully non-dissipative conditions respectively.
83 - Meiqi Liu , Huijie Qiao 2020
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likeliho od estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
462 - Shige Peng , Zhe Yang 2009
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt imes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor responding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا