ﻻ يوجد ملخص باللغة العربية
We investigate three types of amplification processes for light fields coupling to an atom near the end of a one-dimensional semi-infinite waveguide. We consider two setups where a drive creates population inversion in the bare or dressed basis of a three-level atom and one setup where the amplification is due to higher-order processes in a driven two-level atom. In all cases, the end of the waveguide acts as a mirror for the light. We find that this enhances the amplification in two ways compared to the same setups in an open waveguide. Firstly, the mirror forces all output from the atom to travel in one direction instead of being split up into two output channels. Secondly, interference due to the mirror enables tuning of the ratio of relaxation rates for different transitions in the atom to increase population inversion. We quantify the enhancement in amplification due to these factors and show that it can be demonstrated for standard parameters in experiments with superconducting quantum circuits.
Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, emph{e.g.}, in the Casimir effects and the lifetimes of
In this paper we show that the sensitivity of absorption imaging of ultracold atoms can be significantly improved by imaging in a standing-wave configuration. We present simulations of single-atom absorption imaging both for a travelling-wave and a s
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a `quantum memory while idle.
The ultimate precision limit in estimating the Larmor frequency of $N$ unentangled rotating spins is well established, and is highly important for magnetometers, gyroscopes and many other sensors. However this limit assumes perfect, single addressing
We study the decoherence speed limit (DSL) of a single impurity atom immersed in a Bose-Einsteincondensed (BEC) reservoir when the impurity atom is in a double-well potential. We demonstrate how the DSL of the impurity atom can be manipulated by engi