ﻻ يوجد ملخص باللغة العربية
Recent neutrino oscillation experiments used high atomic number nuclear targets to attain sufficient interaction rates. The use of these complex targets introduced systematic uncertainties due to the nuclear effects in the experimental observable and need to be measured properly to pin down the discovery. Through this simulation work, we are trying to quantify the nuclear effects in the Ar target with the H target which are proposed to be used at DUNE far detector and near detector respectively. The DUNE flux is peaking around 2.5 GeV and CCRES is the dominant process at this energy. So, this work will be focused only on the CCQE and CCRES interactions and the simulations will be done using two different neutrino event generators. To quantify the systematic uncertainties in the observables, we presented the ratio of the oscillation probability (P(Ar)/P(H)) as a function of reconstructed neutrino energy for CCRES channels.
We apply a method proposed by members of CTEQ Collaboration to estimate the uncertainty in associated $W$-Higgs boson production at Run II of the Tevatron due to our imprecise knowledge of parton distribution functions. We find that the PDF uncertain
A procedure is proposed which accounts for final state interaction corrections for near threshold meson production in nucleon-nucleon scattering. In analogy with the Watson-Migdal approximation, it is shown that in the limit of extremely strong final
Precise and adequate knowledge of neutrino scattering cross-sections and nuclear effects in them is very important to reduce the systematic uncertainties in neutrino beam oscillation experiments. The insufficiency in our present understanding of thes
We present an algorithm for unweighted event generation in the partonic process pp -> WZ (j) with leptonic decays at next-to-leading order in alpha_S. Monte Carlo programs for processes such as this frequently generate events with negative weights in
I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatmen