ﻻ يوجد ملخص باللغة العربية
A driven-dissipative nonlinear photonic system (e.g. exciton-polaritons) can operate in a gapped superfluid regime. We theoretically demonstrate that the reflection of a linear wave on this superfluid is an analogue of the Andreev reflection of an electron on a superconductor. A normal region surrounded by two superfluids is found to host Andreev-like bound states. These bound states form topological synthetic bands versus the phase difference between the two superfluids. Changing the width of the normal region allows to invert the band topology and to create interface states. Instead of demonstrating a linear crossing, synthetic bands are attracted by the non-linear non-Hermitian coupling of bosonic systems which gives rise to a self-amplified strongly occupied topological state.
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topolo
We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasip
We study the proximity effect in a topological nanowire tunnel coupled to an s-wave superconducting substrate. We use a general Greens function approach that allows us to study the evolution of the Andreev bound states in the wire into Majorana fermi
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi
Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here