ﻻ يوجد ملخص باللغة العربية
One-dimensional tellurides Ta4SiTe4 and Nb4SiTe4 were found to show high thermoelectric performance below room temperature. This study reported the synthesis and thermoelectric properties of whisker crystals of Ta4SiTe4-Nb4SiTe4 solid solutions and Mo- or Ti-doped (Ta0.5Nb0.5)4SiTe4. Thermoelectric power of the solid solutions systematically increased with increasing Ta content, while their electrical resistivity was unexpectedly small. Mo- and Ti-doped (Ta0.5Nb0.5)4SiTe4 showed n- and p-type thermoelectric properties with large power factors exceeding 40 microW cm-1 K-2, respectively. The fact that not only Ta4SiTe4 and Nb4SiTe4 but also their solid solutions showed high performance indicated that this system is a promising candidate for thermoelectric applications at low temperatures.
We examined the electrical transport properties of densified LaOBiS2-xSex, which constitutes a new family of thermoelectric materials. The power factor increased with increasing concentration of Se, i.e., Se substitution led to an enhanced electrical
MoTe2 is a rare transition-metal ditelluride having two kinds of layered polytypes, hexagonal structure with trigonal prismatic Mo coordination and monoclinic structure with octahedral Mo coordination. The monoclinic distortion in the latter is cause
We present a study of the electronic properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. Th
Electron-phonon interaction (EPI) is presumably detrimental for thermoelectric performance in semiconductors because it limits carrier mobility. Here we show that enhanced EPI with strong energy dependence offers an intrinsic pathway to significant i
We study thermoelectric transport at low temperatures in correlated Kondo insulators, motivated by the recent observation of a high thermoelectric figure of merit(ZT) in $FeSb_2$ at $T sim 10 K$. Even at room temperature, correlations have the potent