ﻻ يوجد ملخص باللغة العربية
Quantum polyspectra of up to fourth order are introduced for modeling and evaluating quantum transport measurements offering a powerful alternative to methods of the traditional full counting statistics. Experimental time-traces of the occupation dynamics of a single quantum dot are evaluated via simultaneously fitting their 2nd-, 3rd-, and 4th-order spectra. The scheme recovers the same electron tunneling and spin relaxation rates as previously obtained from an analysis of the same data in terms of factorial cumulants of the full counting statistics and waiting-time distributions. Moreover, the evaluation of time-traces via quantum polyspectra is demonstrated to be feasible also in the weak measurement regime even when quantum jumps can no longer be identified from time-traces and methods related to the full counting statistics cease to be applicable. A numerical study of a double dot system shows strongly changing features in the quantum polyspectra for the transition from the weak measurement regime to the Zeno-regime where coherent tunneling dynamics is suppressed. Quantum polyspectra thus constitute a general unifying approach to the strong and weak regime of quantum measurements with possible applications in diverse fields as nano-electronics, circuit quantum electrodynamics, spin noise spectroscopy, or quantum optics.
In addition to the well-known Landauer-Buttiker scattering theory and the nonequilibrium Greens function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the
A simple model of quantum particle is proposed in which the particle in a {it macroscopic} rest frame is represented by a {it microscopic d}-dimensional oscillator, {it s=(d-1)/2} being the spin of the particle. The state vectors are defined simply b
Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neu
A crucial subroutine for various quantum computing and communication algorithms is to efficiently extract different classical properties of quantum states. In a notable recent theoretical work by Huang, Kueng, and Preskill~cite{huang2020predicting},
Since the photon box gedanken experiments of several of the founding fathers of modern physics, considerable progress has been made in differentiating the quantum and classical worlds. In this pursuit, the cavity as an open quantum system has been in