ﻻ يوجد ملخص باللغة العربية
We present a novel moving immersed boundary method (IBM) and employ it in direct numerical simulations (DNS) of the closed-vessel swirling von Karman flow in laminar and turbulent regimes. The IBM extends direct-forcing approaches by leveraging a time integration scheme, that embeds the immersed boundary forcing step within a semi-implicit iterative Crank-Nicolson scheme. The overall method is robust, stable, and yields excellent results in canonical cases with static and moving boundaries. The moving IBM allows us to reproduce the geometry and parameters of the swirling von Karman flow experiments in (F. Ravelet, A. Chiffaudel, and F. Daviaud, JFM 601, 339 (2008)) on a Cartesian grid. In these DNS, the flow is driven by two-counter rotating impellers fitted with curved inertial stirrers. We analyze the transition from laminar to turbulent flow by increasing the rotation rate of the counter-rotating impellers to attain the four Reynolds numbers 90, 360, 2000, and 4000. In the laminar regime at Reynolds number 90 and 360, we observe flow features similar to those reported in the experiments and in particular, the appearance of a symmetry-breaking instability at Reynolds number 360. We observe transitional turbulence at Reynolds number 2000. Fully developed turbulence is achieved at Reynolds number 4000. Non-dimensional torque computed from simulations matches correlations from experimental data. The low Reynolds number symmetries, lost with increasing Reynolds number, are recovered in the mean flow in the fully developed turbulent regime, where we observe two tori symmetrical about the mid-height plane. We note that turbulent fluctuations in the central region of the device remain anisotropic even at the highest Reynolds number 4000, suggesting that isotropization requires significantly higher Reynolds numbers.
A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of inj
We study magnetohydrodynamics in a von Karman flow driven by the rotation of impellers made of material with varying electrical conductivity and magnetic permeability. Gallium is the working fluid and magnetic Reynolds numbers of order unity are achi
We experimentally characterize the fluctuations of the non-homogeneous non-isotropic turbulence in an axisymmetric von Karman flow. We show that these fluctuations satisfy relations analogous to classical Fluctuation-Dissipation Relations (FDRs) in s
Turbulent flows under transcritical conditions are present in regenerative cooling systems of rocker engines and extraction processes in chemical engineering. The turbulent flows and the corresponding heat transfer phenomena in these complex processe
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this c