ﻻ يوجد ملخص باللغة العربية
The convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead against efficient deployment. Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure, such that the pruned network can be easily deployed in practice. However, existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space. In this paper, we introduce Differentiable Annealing Indicator Search (DAIS) that leverages the strength of neural architecture search in the channel pruning and automatically searches for the effective pruned model with given constraints on computation overhead. Specifically, DAIS relaxes the binarized channel indicators to be continuous and then jointly learns both indicators and model parameters via bi-level optimization. To bridge the non-negligible discrepancy between the continuous model and the target binarized model, DAIS proposes an annealing-based procedure to steer the indicator convergence towards binarized states. Moreover, DAIS designs various regularizations based on a priori structural knowledge to control the pruning sparsity and to improve model performance. Experimental results show that DAIS outperforms state-of-the-art pruning methods on CIFAR-10, CIFAR-100, and ImageNet.
Budgeted pruning is the problem of pruning under resource constraints. In budgeted pruning, how to distribute the resources across layers (i.e., sparsity allocation) is the key problem. Traditional methods solve it by discretely searching for the lay
As the convolutional neural network (CNN) gets deeper and wider in recent years, the requirements for the amount of data and hardware resources have gradually increased. Meanwhile, CNN also reveals salient redundancy in several tasks. The existing ma
Channel pruning has demonstrated its effectiveness in compressing ConvNets. In many related arts, the importance of an output feature map is only determined by its associated filter. However, these methods ignore a small part of weights in the next l
In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the t
Convolutional neural networks (CNNs) have shown good performance in polarimetric synthetic aperture radar (PolSAR) image classification due to the automation of feature engineering. Excellent hand-crafted architectures of CNNs incorporated the wisdom