ترغب بنشر مسار تعليمي؟ اضغط هنا

DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator Search

155   0   0.0 ( 0 )
 نشر من قبل Ning Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead against efficient deployment. Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure, such that the pruned network can be easily deployed in practice. However, existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space. In this paper, we introduce Differentiable Annealing Indicator Search (DAIS) that leverages the strength of neural architecture search in the channel pruning and automatically searches for the effective pruned model with given constraints on computation overhead. Specifically, DAIS relaxes the binarized channel indicators to be continuous and then jointly learns both indicators and model parameters via bi-level optimization. To bridge the non-negligible discrepancy between the continuous model and the target binarized model, DAIS proposes an annealing-based procedure to steer the indicator convergence towards binarized states. Moreover, DAIS designs various regularizations based on a priori structural knowledge to control the pruning sparsity and to improve model performance. Experimental results show that DAIS outperforms state-of-the-art pruning methods on CIFAR-10, CIFAR-100, and ImageNet.



قيم البحث

اقرأ أيضاً

Budgeted pruning is the problem of pruning under resource constraints. In budgeted pruning, how to distribute the resources across layers (i.e., sparsity allocation) is the key problem. Traditional methods solve it by discretely searching for the lay er-wise pruning ratios, which lacks efficiency. In this paper, we propose Differentiable Sparsity Allocation (DSA), an efficient end-to-end budgeted pruning flow. Utilizing a novel differentiable pruning process, DSA finds the layer-wise pruning ratios with gradient-based optimization. It allocates sparsity in continuous space, which is more efficient than methods based on discrete evaluation and search. Furthermore, DSA could work in a pruning-from-scratch manner, whereas traditional budgeted pruning methods are applied to pre-trained models. Experimental results on CIFAR-10 and ImageNet show that DSA could achieve superior performance than current iterative budgeted pruning methods, and shorten the time cost of the overall pruning process by at least 1.5x in the meantime.
As the convolutional neural network (CNN) gets deeper and wider in recent years, the requirements for the amount of data and hardware resources have gradually increased. Meanwhile, CNN also reveals salient redundancy in several tasks. The existing ma gnitude-based pruning methods are efficient, but the performance of the compressed network is unpredictable. While the accuracy loss after pruning based on the structure sensitivity is relatively slight, the process is time-consuming and the algorithm complexity is notable. In this article, we propose a novel automatic channel pruning method (ACP). Specifically, we firstly perform layer-wise channel clustering via the similarity of the feature maps to perform preliminary pruning on the network. Then a population initialization method is introduced to transform the pruned structure into a candidate population. Finally, we conduct searching and optimizing iteratively based on the particle swarm optimization (PSO) to find the optimal compressed structure. The compact network is then retrained to mitigate the accuracy loss from pruning. Our method is evaluated against several state-of-the-art CNNs on three different classification datasets CIFAR-10/100 and ILSVRC-2012. On the ILSVRC-2012, when removing 64.36% parameters and 63.34% floating-point operations (FLOPs) of ResNet-50, the Top-1 and Top-5 accuracy drop are less than 0.9%. Moreover, we demonstrate that without harming overall performance it is possible to compress SSD by more than 50% on the target detection dataset PASCAL VOC. It further verifies that the proposed method can also be applied to other CNNs and application scenarios.
Channel pruning has demonstrated its effectiveness in compressing ConvNets. In many related arts, the importance of an output feature map is only determined by its associated filter. However, these methods ignore a small part of weights in the next l ayer which disappears as the feature map is removed. They ignore the phenomenon of weight dependency. Besides, many pruning methods use only one criterion for evaluation and find a sweet spot of pruning structure and accuracy in a trial-and-error fashion, which can be time-consuming. In this paper, we proposed a channel pruning algorithm via multi-criteria based on weight dependency, CPMC, which can compress a pre-trained model directly. CPMC defines channel importance in three aspects, including its associated weight value, computational cost, and parameter quantity. According to the phenomenon of weight dependency, CPMC gets channel importance by assessing its associated filter and the corresponding partial weights in the next layer. Then CPMC uses global normalization to achieve cross-layer comparison. Finally, CPMC removes less important channels by global ranking. CPMC can compress various CNN models, including VGGNet, ResNet, and DenseNet on various image classification datasets. Extensive experiments have shown CPMC outperforms the others significantly.
In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the t arget network. We use a simple stochastic structure sampling method for training the PruningNet. Then, we apply an evolutionary procedure to search for good-performing pruned networks. The search is highly efficient because the weights are directly generated by the trained PruningNet and we do not need any finetuning at search time. With a single PruningNet trained for the target network, we can search for various Pruned Networks under different constraints with little human participation. Compared to the state-of-the-art pruning methods, we have demonstrated superior performances on MobileNet V1/V2 and ResNet. Codes are available on https://github.com/liuzechun/MetaPruning.
Convolutional neural networks (CNNs) have shown good performance in polarimetric synthetic aperture radar (PolSAR) image classification due to the automation of feature engineering. Excellent hand-crafted architectures of CNNs incorporated the wisdom of human experts, which is an important reason for CNNs success. However, the design of the architectures is a difficult problem, which needs a lot of professional knowledge as well as computational resources. Moreover, the architecture designed by hand might be suboptimal, because it is only one of thousands of unobserved but objective existed paths. Considering that the success of deep learning is largely due to its automation of the feature engineering process, how to design automatic architecture searching methods to replace the hand-crafted ones is an interesting topic. In this paper, we explore the application of neural architecture search (NAS) in PolSAR area for the first time. Different from the utilization of existing NAS methods, we propose a differentiable architecture search (DAS) method which is customized for PolSAR classification. The proposed DAS is equipped with a PolSAR tailored search space and an improved one-shot search strategy. By DAS, the weights parameters and architecture parameters (corresponds to the hyperparameters but not the topologies) can be optimized by stochastic gradient descent method during the training. The optimized architecture parameters should be transformed into corresponding CNN architecture and re-train to achieve high-precision PolSAR classification. In addition, complex-valued DAS is developed to take into account the characteristics of PolSAR images so as to further improve the performance. Experiments on three PolSAR benchmark datasets show that the CNNs obtained by searching have better classification performance than the hand-crafted ones.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا