ﻻ يوجد ملخص باللغة العربية
We consider one-dimensional branching Brownian motion in which particles are absorbed at the origin. We assume that when a particle branches, the offspring distribution is supercritical, but the particles are given a critical drift towards the origin so that the process eventually goes extinct with probability one. We establish precise asymptotics for the probability that the process survives for a large time t, building on previous results by Kesten (1978) and Berestycki, Berestycki, and Schweinsberg (2014). We also prove a Yaglom-type limit theorem for the behavior of the process conditioned to survive for an unusually long time, providing an essentially complete answer to a question first addressed by Kesten (1978). An important tool in the proofs of these results is the convergence of a certain observable to a continuous state branching process. Our proofs incorporate new ideas which might be of use in other branching models.
We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $-sqrt{2}$. Kesten (1978) showed that almost surely this process eventually d
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at $x > 0$, particles move according to independent one-dimensional Brownian motions with the critical drift of $-sqrt{2}$, and particles ar
Motivated by the goal of understanding the evolution of populations undergoing selection, we consider branching Brownian motion in which particles independently move according to one-dimensional Brownian motion with drift, each particle may either sp
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ conver
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super