ﻻ يوجد ملخص باللغة العربية
Cell migration, which can be significantly affected by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays a crucial role in many physiological and pathological processes. The efficiency of cell migration, which is typically modeled as a persistent random walk (PRW), depends on two critical motility parameters, i.e., migration speed and persistence. It is generally very challenging to efficiently and accurately extract these key dynamics parameters from noisy experimental data. Here, we employ the normalized Shannon entropy to quantify the deviation of cell migration dynamics from that of diffusive/ballistic motion as well as to derive the persistence of cell migration based on the Fourier power spectrum of migration velocities. Moreover, we introduce the time-varying Shannon entropy based on the wavelet power spectrum of cellular dynamics and demonstrate its superior utility to characterize the time-dependent persistence of cell migration, which is typically resulted from complex and time-varying intra or extra-cellular mechanisms. We employ our approach to analyze trajectory data of in vitro cell migration regulated by distinct intracellular and extracellular mechanisms, exhibiting a rich spectrum of dynamic characteristics. Our analysis indicates that the combination of Shannon entropy and wavelet transform offers a simple and efficient tool to estimate the persistence of cell migration, which may also reflect the real-time effects of ICSP-ECM to some extent.
Collections of cells exhibit coherent migration during morphogenesis, cancer metastasis, and wound healing. In many cases, bigger clusters split, smaller sub-clusters collide and reassemble, and gaps continually emerge. The connections between cell-l
Amoeboid cell migration is characterized by frequent changes of the direction of motion and resembles a persistent random walk on long time scales. Although it is well known that cell migration is typically driven by the actin cytoskeleton, the cause
Cell crawling is critical to biological development, homeostasis and disease. In many cases, cell trajectories are quasi-random-walk. In vitro assays on flat surfaces often described such quasi-random-walk cell trajectories as approximations to a sol
Key to collective cell migration is the ability of cells to rearrange their position with respect to their neighbors. Recent theory and experiments demonstrated that cellular rearrangements are facilitated by cell shape, with cells having more elonga
In order to use persistence diagrams as a true statistical tool, it would be very useful to have a good notion of mean and variance for a set of diagrams. In 2011, Mileyko and his collaborators made the first study of the properties of the Frechet me