ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Time-Varying Topology Identification via Prediction-Correction Algorithms

79   0   0.0 ( 0 )
 نشر من قبل Alberto Natali
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Signal processing and machine learning algorithms for data supported over graphs, require the knowledge of the graph topology. Unless this information is given by the physics of the problem (e.g., water supply networks, power grids), the topology has to be learned from data. Topology identification is a challenging task, as the problem is often ill-posed, and becomes even harder when the graph structure is time-varying. In this paper, we address the problem of dynamic topology identification by building on recent results from time-varying optimization, devising a general-purpose online algorithm operating in non-stationary environments. Because of its iteration-constrained nature, the proposed approach exhibits an intrinsic temporal-regularization of the graph topology without explicitly enforcing it. As a case-study, we specialize our method to the Gaussian graphical model (GGM) problem and corroborate its performance.



قيم البحث

اقرأ أيضاً

In this work, we explore the state-space formulation of network processes to recover the underlying structure of the network (local connections). To do so, we employ subspace techniques borrowed from system identification literature and extend them t o the network topology inference problem. This approach provides a unified view of the traditional network control theory and signal processing on networks. In addition, it provides theoretical guarantees for the recovery of the topological structure of a deterministic linear dynamical system from input-output observations even though the input and state evolution networks can be different.
In this work, we explore the state-space formulation of a network process to recover, from partial observations, the underlying network topology that drives its dynamics. To do so, we employ subspace techniques borrowed from system identification lit erature and extend them to the network topology identification problem. This approach provides a unified view of the traditional network control theory and signal processing on graphs. In addition, it provides theoretical guarantees for the recovery of the topological structure of a deterministic continuous-time linear dynamical system from input-output observations even though the input and state interaction networks might be different. The derived mathematical analysis is accompanied by an algorithm for identifying, from data, a network topology consistent with the dynamics of the system and conforms to the prior information about the underlying structure. The proposed algorithm relies on alternating projections and is provably convergent. Numerical results corroborate the theoretical findings and the applicability of the proposed algorithm.
81 - Tu Lan , Jiajun Duan , Bei Zhang 2019
This paper presents a novel AI-based approach for maximizing time-series available transfer capabilities (ATCs) via autonomous topology control considering various practical constraints and uncertainties. Several AI techniques including supervised le arning and deep reinforcement learning (DRL) are adopted and improved to train effective AI agents for achieving the desired performance. First, imitation learning (IL) is used to provide a good initial policy for the AI agent. Then, the agent is trained by DRL algorithms with a novel guided exploration technique, which significantly improves the training efficiency. Finally, an Early Warning (EW) mechanism is designed to help the agent find good topology control strategies for long testing periods, which helps the agent to determine action timing using power system domain knowledge; thus, effectively increases the system error-tolerance and robustness. Effectiveness of the proposed approach is demonstrated in the 2019 Learn to Run a Power Network (L2RPN) global competition, where the developed AI agents can continuously and safely control a power grid to maximize ATCs without operators intervention for up to 1-months operation data and eventually won the first place in both development and final phases of the competition. The winning agent has been open-sourced on GitHub.
Time series data compression is emerging as an important problem with the growth in IoT devices and sensors. Due to the presence of noise in these datasets, lossy compression can often provide significant compression gains without impacting the perfo rmance of downstream applications. In this work, we propose an error-bounded lossy compressor, LFZip, for multivariate floating-point time series data that provides guaranteed reconstruction up to user-specified maximum absolute error. The compressor is based on the prediction-quantization-entropy coder framework and benefits from improved prediction using linear models and neural networks. We evaluate the compressor on several time series datasets where it outperforms the existing state-of-the-art error-bounded lossy compressors. The code and data are available at https://github.com/shubhamchandak94/LFZip
Cross features play an important role in click-through rate (CTR) prediction. Most of the existing methods adopt a DNN-based model to capture the cross features in an implicit manner. These implicit methods may lead to a sub-optimized performance due to the limitation in explicit semantic modeling. Although traditional statistical explicit semantic cross features can address the problem in these implicit methods, it still suffers from some challenges, including lack of generalization and expensive memory cost. Few works focus on tackling these challenges. In this paper, we take the first step in learning the explicit semantic cross features and propose Pre-trained Cross Feature learning Graph Neural Networks (PCF-GNN), a GNN based pre-trained model aiming at generating cross features in an explicit fashion. Extensive experiments are conducted on both public and industrial datasets, where PCF-GNN shows competence in both performance and memory-efficiency in various tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا