ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement

86   0   0.0 ( 0 )
 نشر من قبل Xingjian Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine-tuning deep neural networks pre-trained on large scale datasets is one of the most practical transfer learning paradigm given limited quantity of training samples. To obtain better generalization, using the starting point as the reference, either through weights or features, has been successfully applied to transfer learning as a regularizer. However, due to the domain discrepancy between the source and target tasks, there exists obvious risk of negative transfer. In this paper, we propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED), where the relevant knowledge with respect to the target task is disentangled from the original source model and used as a regularizer during fine-tuning the target model. Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average. TRED also outperforms other state-of-the-art transfer learning regularizers such as L2-SP, AT, DELTA and BSS.



قيم البحث

اقرأ أيضاً

132 - Qing Sun , James Cross 2020
Knowledge Transfer has been applied in solving a wide variety of problems. For example, knowledge can be transferred between tasks (e.g., learning to handle novel situations by leveraging prior knowledge) or between agents (e.g., learning from others without direct experience). Without loss of generality, we relate knowledge transfer to KL-divergence minimization, i.e., matching the (belief) distributions of learners and teachers. The equivalence gives us a new perspective in understanding variants of the KL-divergence by looking at how learners structure their interaction with teachers in order to acquire knowledge. In this paper, we provide an in-depth analysis of KL-divergence minimization in Forward and Backward orders, which shows that learners are reinforced via on-policy learning in Backward. In contrast, learners are supervised in Forward. Moreover, our analysis is gradient-based, so it can be generalized to arbitrary tasks and help to decide which order to minimize given the property of the task. By replacing Forward with Backward in Knowledge Distillation, we observed +0.7-1.1 BLEU gains on the WMT17 De-En and IWSLT15 Th-En machine translation tasks.
Background: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. Methods: We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains. Results: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach. Conclusions: These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues. Significance: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small. The source code and the pretrained models are available at http://github.com/pquochuy/sleep_transfer_learning.
We consider the problem of learning representations that achieve group and subgroup fairness with respect to multiple sensitive attributes. Taking inspiration from the disentangled representation learning literature, we propose an algorithm for learn ing compact representations of datasets that are useful for reconstruction and prediction, but are also emph{flexibly fair}, meaning they can be easily modified at test time to achieve subgroup demographic parity with respect to multiple sensitive attributes and their conjunctions. We show empirically that the resulting encoder---which does not require the sensitive attributes for inference---enables the adaptation of a single representation to a variety of fair classification tasks with new target labels and subgroup definitions.
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works using KG embeddings. While existing KG embedding approaches mainly learn a nd predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging, since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and the inconsistency of described facts. In this paper, we propose KEnS, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs. KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to combine prediction results from embeddings of multiple language-specific KGs, for which multiple ensemble techniques are investigated. Experiments on five real-world language-specific KGs show that KEnS consistently improves state-of-the-art methods on KG completion, via effectively identifying and leveraging complementary knowledge.
Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the represent ation of an entity by aggregating the features of its neighbors and itself. However, many KG representation learning scenarios only provide the structure information that describes the relationships among entities, causing that entities have no input features. In this case, existing aggregation mechanisms are incapable of inducing embeddings of unseen entities as these entities have no pre-defined features for aggregation. In this paper, we present a decentralized KG representation learning approach, decentRL, which encodes each entity from and only from the embeddings of its neighbors. For optimization, we design an algorithm to distill knowledge from the model itself such that the output embeddings can continuously gain knowledge from the corresponding original embeddings. Extensive experiments show that the proposed approach performed better than many cutting-edge models on the entity alignment task, and achieved competitive performance on the entity prediction task. Furthermore, under the inductive setting, it significantly outperformed all baselines on both tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا