ﻻ يوجد ملخص باللغة العربية
In simulations of fluid motion time accuracy has proven to be elusive. We seek highly accurate methods with strong enough stability properties to deal with the richness of scales of many flows. These methods must also be easy to implement within current complex, possibly legacy codes. Herein we develop, analyze and test new time stepping methods addressing these two issues with the goal of accelerating the development of time accurate methods addressing the needs of applications. The new methods are created by introducing inexpensive pre-filtering and post-filtering steps to popular methods which have been implemented and tested within existing codes. We show that pre-filtering and post-filtering a multistep or multi-stage method results in new methods which have both multiple steps and stages: these are general linear methods (GLMs). We utilize the well studied properties of GLMs to understand the accuracy and stability of filtered method, and to design optimal new filters for popular time-stepping methods. We present several new embedded families of high accuracy methods with low cognitive complexity and excellent stability properties. Numerical tests of the methods are presented, including ones finding failure points of some methods. Among the new methods presented is a novel pair of alternating filters for the Implicit Euler method which induces a third order, A-stable, error inhibiting scheme which is shown to be particularly effective.
In this paper, we develop efficient and accurate algorithms for evaluating $varphi(A)$ and $varphi(A)b$, where $A$ is an $Ntimes N$ matrix, $b$ is an $N$ dimensional vector and $varphi$ is the function defined by $varphi(x)equivsumlimits^{infty}_{k=0
This paper studies fixed-step convergence of implicit-explicit general linear methods. We focus on a subclass of schemes that is internally consistent, has high stage order, and favorable stability properties. Classical, index-1 differential algebrai
In this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The
We propose and study two second-order in time implicit-explicit (IMEX) methods for the coupled Stokes-Darcy system that governs flows in karst aquifers. The first is a combination of a second-order backward differentiation formula and the second-orde