ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomium: A high-resolution view on the highly asymmetric wind of the AGB star Pi1 Gruis. I. First detection of a new companion and its effect on the inner wind

145   0   0.0 ( 0 )
 نشر من قبل Ward Homan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nebular circumstellar environments of cool evolved stars are known to harbour a rich morphological complexity of gaseous structures on different length scales. A large part of these density structures are thought to be brought about by the interaction of the stellar wind with a close companion. The S-type asymptotic giant branch star Pi1 Gruis, which has a known companion at ~440 au and is thought to harbour a second, closer-by (<10 au) companion, was observed with the Atacama Large Millimeter/submillimeter Array as part of the ATOMIUM Large programme. In this work, the brightest CO, SiO, and HCN molecular line transitions are analysed. The continuum map shows two maxima, separated by 0.04 (6 au). The CO data unambiguously reveal that Pi1 Grus circumstellar environment harbours an inclined, radially outflowing, equatorial density enhancement. It contains a spiral structure at an angle of 38+/-3 deg with the line-of-sight. The HCN emission in the inner wind reveals a clockwise spiral, with a dynamical crossing time of the spiral arms consistent with a companion at a distance of 0.04 from the asymptotic giant branch star, which is in agreement with the position of the secondary continuum peak. The inner wind dynamics imply a large acceleration region, consistent with a beta-law power of ~6. The CO emission suggests that the spiral is approximately Archimedean within 5, beyond which this trend breaks down as the succession of the spiral arms becomes less periodic. The SiO emission at scales smaller than 0.5 exhibits signatures of gas in rotation, which is found to fit the expected behaviour of gas in the wind-companion interaction zone. An investigation of SiO maser emission reveals what could be a stream of gas accelerating from the surface of the AGB star to the companion. Using these dynamics, we have tentatively derived an upper limit on the companion mass to be ~1.1 Msol.



قيم البحث

اقرأ أيضاً

Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology i s most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star $pi^1$ Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 $mu$m and 160 $mu$m picture the large-scale environment of $pi^1$ Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of $pi^1$ Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of $38^{primeprime}$ from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.
We are studying a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of nebulae around evolved stars. We present ALMA maps of 12CO and 13CO J=3-2 lines in one of these sources, IRAS08544-4431. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 Mo, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of ~ 4 10^16 cm. The total nebular mass is ~ 2 10^-2 Mo, of which ~ 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of ~ 10000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.
89 - P. Jakab , A. Brandenburg 2020
Stellar winds are an integral part of the underlying dynamo, the motor of stellar activity. The wind controls the stars angular momentum loss, which depends on the magnetic field geometry which varies significantly in time and latitude. Here we study basic properties of a self-consistent model that includes simple representations of both the global stellar dynamo in a spherical shell and the exterior in which the wind accelerates and becomes supersonic. We numerically solve an axisymmetric mean-field model for the induction, momentum, and continuity equations using an isothermal equation of state. The model allows for the simultaneous generation of a mean magnetic field and the development of a Parker wind. The resulting flow is transonic at the critical point, which we arrange to be between the inner and outer radii of the model. The boundary conditions are assumed to be such that the magnetic field is antisymmetric about the equator, i.e., dipolar. At the solar rotation rate, the dynamo is oscillatory and of $alpha^2$ type. In most of the domain, the magnetic field corresponds to that of a split monopole. The magnetic energy flux is largest between the stellar surface and the critical point. The angular momentum flux is highly variable in time and can reach negative values, especially at midlatitudes. At rapid rotation of up to 50 times the solar value, most of the magnetic field is lost along the axis within the inner tangential cylinder of the model. The model reveals unexpected features that are not generally anticipated from models that are designed to reproduce the solar wind: highly variable angular momentum fluxes even from just an $alpha^2$ dynamo in the star. A major caveat of our isothermal models with a magnetic field produced by a dynamo is the difficulty to reach small enough plasma betas without the dynamo itself becoming unrealistically strong inside the star.
We present results from a global view on the colliding-wind binary WR 147. We analysed new optical spectra of WR 147 obtained with Gran Telescopio CANARIAS and archive spectra from the Hubble Space Telescope by making use of modern atmosphere models accounting for optically thin clumping. We adopted a grid-modelling approach to derive some basic physical characteristics of both stellar components in WR 147. For the currently accepted distance of 630 pc to WR 147, the values of mass-loss rate derived from modelling its optical spectra are in acceptable correspondence with that from modelling its X-ray emission. However, they give a lower radio flux than observed. A plausible solution for this problem could be if the volume filling factor at large distances from the star (radio-formation region) is smaller than close to the star (optical-formation region). Adopting this, the model can match well both optical and thermal radio emission from WR 147. The global view on the colliding-wind binary WR 147 thus shows that its observational properties in different spectral domains can be explained in a self-consistent physical picture.
In low-mass binary systems, mass transfer is likely to occur via a slow and dense stellar wind when one of the stars is in the AGB phase. Observations show that many binaries that have undergone AGB mass transfer have orbital periods of 1-10 yr, at o dds with the predictions of binary population synthesis models. We investigate the mass-accretion efficiency and angular-momentum loss via wind mass transfer in AGB binary systems. We use these quantities to predict the evolution of the orbit. We perform 3D hydrodynamical simulations of the stellar wind lost by an AGB star using the AMUSE framework. We approximate the thermal evolution of the gas by imposing a simple effective cooling balance and we vary the orbital separation and the velocity of the stellar wind. We find that for wind velocities $v_{infty}$ larger than the relative orbital velocity of the system $v_mathrm{orb}$ the flow is described by the Bondi-Hoyle-Lyttleton approximation and the angular-momentum loss is modest, leading to an expansion of the orbit. For low wind velocities an accretion disk is formed around the companion and the accretion efficiency as well as the angular-momentum loss are enhanced, implying that the orbit will shrink. We find that the transfer of angular momentum from the orbit to the outflowing gas occurs within a few orbital separations from the center of mass of the binary. Our results suggest that the orbital evolution of AGB binaries can be predicted as a function of the ratio $v_{infty}/v_mathrm{orb}$. Our results can provide insight into the puzzling orbital periods of post-AGB binaries and suggest that the number of stars entering into the common-envelope phase will increase. The latter can have significant implications for the expected formation rates of the end products of low-mass binary evolution, such as cataclysmic binaries, type Ia supernova and double white-dwarf mergers. [ABRIDGED]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا