ﻻ يوجد ملخص باللغة العربية
We have studied the pressure effect on the rattling of tetrahedrite Cu$_{10}$Zn$_{2}$Sb$_{4}$S$_{13,}$(CZSS) and type-I clathrate Ba$_{8}$Ga$_{16}$Sn$_{30,}$(BGS) by specific heat and x-ray diffraction measurements. By applying pressure $P$, the rattling energy for CZSS initially decreases and steeply increases for $P$ $textgreater$ $1$ GPa. By contrast, the energy for BGS increases monotonically with $P$ up to 6.5 GPa. An analysis of the pressure dependent specific heat and x-ray diffraction indicates that the out-of-plane rattling of the Cu atoms in the S$_{3}$ triangle of CZSS originates from the chemical pressure, unlike the rattling of the Ba ions among off-center sites in an oversized cage of BGS. The rattling in CZSS ceases upon further increasing $P$ above 2 GPa, suggesting that Cu atoms escape away from the S$_{3}$ triangle plane.
The mineral tetrahedrite Cu$_{12}$Sb$_{4}$S$_{13}$ exhibits a first-order metal--insulator transition (MIT) at $T_{rm MI}$ = 85 K and ambient pressure. We measured the $^{63}$Cu-NMR at ambient pressure and the resistivity and magnetic susceptibility
Pressure dependence of the electronic and crystal structures of K$_{x}$Fe$_{2-y}$Se$_{2}$, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data
We have systematically studied the magnetic properties of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr by the neutron diffraction and muon spin rotation and relaxation ($mu$SR) techniques. Neutron-diffraction measurements suggest that the long-range magnetic order an
We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe$_3$ and CeTe$_3$ compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced q
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A,