ﻻ يوجد ملخص باللغة العربية
Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a users long-term preference (or an items long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each nodes local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.
Ubiquitous personalized recommender systems are built to achieve two seemingly conflicting goals, to serve high quality content tailored to individual users taste and to adapt quickly to the ever changing environment. The former requires a complex ma
A significant remaining challenge for existing recommender systems is that users may not trust the recommender systems for either lack of explanation or inaccurate recommendation results. Thus, it becomes critical to embrace a trustworthy recommender
The business objectives of recommenders, such as increasing sales, are aligned with the causal effect of recommendations. Previous recommenders targeting for the causal effect employ the inverse propensity scoring (IPS) in causal inference. However,
In this paper, we propose a robust sequential learning strategy for training large-scale Recommender Systems (RS) over implicit feedback mainly in the form of clicks. Our approach relies on the minimization of a pairwise ranking loss over blocks of c
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for r