ﻻ يوجد ملخص باللغة العربية
Quantum tomography is a process of quantum state reconstruction using data from multiple measurements. An essential goal for a quantum tomography algorithm is to find measurements that will maximize the useful information about an unknown quantum state obtained through measurements. One of the recently proposed methods of quantum tomography is the algorithm based on rank-preserving transformations. The main idea is to transform a basic measurement set in a way to provide a situation that is equivalent to measuring the maximally mixed state. As long as tomography of a fully mixed state has the fastest convergence comparing to other states, this method is expected to be highly accurate. We present numerical and experimental comparisons of rank-preserving tomography with another adaptive method, which includes measurements in the estimator eigenbasis and with random-basis tomography. We also study ways to improve the efficiency of the rank-preserving transformations method using transformation unitary freedom and measurement set complementation.
We report an experimental realization of an adaptive quantum state tomography protocol. Our method takes advantage of a Bayesian approach to statistical inference and is naturally tailored for adaptive strategies. For pure states we observe close to
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)]
Quantum State Tomography is the task of determining an unknown quantum state by making measurements on identical copies of the state. Current algorithms are costly both on the experimental front -- requiring vast numbers of measurements -- as well as
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogen
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol wher