ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised deep learning based on label propagation in a 2D embedded space

217   0   0.0 ( 0 )
 نشر من قبل Barbara Benato
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While convolutional neural networks need large labeled sets for training images, expert human supervision of such datasets can be very laborious. Proposed solutions propagate labels from a small set of supervised images to a large set of unsupervised ones to obtain sufficient truly-and-artificially labeled samples to train a deep neural network model. Yet, such solutions need many supervised images for validation. We present a loop in which a deep neural network (VGG-16) is trained from a set with more correctly labeled samples along iterations, created by using t-SNE to project the features of its last max-pooling layer into a 2D embedded space in which labels are propagated using the Optimum-Path Forest semi-supervised classifier. As the labeled set improves along iterations, it improves the features of the neural network. We show that this can significantly improve classification results on test data (using only 1% to 5% of supervised samples) of three private challenging datasets and two public ones.



قيم البحث

اقرأ أيضاً

Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transduct ive learning have not been fully exploited in the inductive framework followed by modern deep learning. The same holds for the manifold assumption---that similar examples should get the same prediction. In this work, we employ a transductive label propagation method that is based on the manifold assumption to make predictions on the entire dataset and use these predictions to generate pseudo-labels for the unlabeled data and train a deep neural network. At the core of the transductive method lies a nearest neighbor graph of the dataset that we create based on the embeddings of the same network.Therefore our learning process iterates between these two steps. We improve performance on several datasets especially in the few labels regime and show that our work is complementary to current state of the art.
Scene understanding is an important capability for robots acting in unstructured environments. While most SLAM approaches provide a geometrical representation of the scene, a semantic map is necessary for more complex interactions with the surroundin gs. Current methods treat the semantic map as part of the geometry which limits scalability and accuracy. We propose to represent the semantic map as a geometrical mesh and a semantic texture coupled at independent resolution. The key idea is that in many environments the geometry can be greatly simplified without loosing fidelity, while semantic information can be stored at a higher resolution, independent of the mesh. We construct a mesh from depth sensors to represent the scene geometry and fuse information into the semantic texture from segmentations of individual RGB views of the scene. Making the semantics persistent in a global mesh enables us to enforce temporal and spatial consistency of the individual view predictions. For this, we propose an efficient method of establishing consensus between individual segmentations by iteratively retraining semantic segmentation with the information stored within the map and using the retrained segmentation to re-fuse the semantics. We demonstrate the accuracy and scalability of our approach by reconstructing semantic maps of scenes from NYUv2 and a scene spanning large buildings.
142 - Zhao Li , Yixin Liu , Zhen Zhang 2020
Graph neural networks (GNNs) have emerged as effective approaches for graph analysis, especially in the scenario of semi-supervised learning. Despite its success, GNN often suffers from over-smoothing and over-fitting problems, which affects its perf ormance on node classification tasks. We analyze that an alternative method, the label propagation algorithm (LPA), avoids the aforementioned problems thus it is a promising choice for graph semi-supervised learning. Nevertheless, the intrinsic limitations of LPA on feature exploitation and relation modeling make propagating labels become less effective. To overcome these limitations, we introduce a novel framework for graph semi-supervised learning termed as Cyclic Label Propagation (CycProp for abbreviation), which integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner to exploit the advantages of both GNNs and LPA. In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation, while fine-tunes the weighted graph of label propagation with the help of node embedding in turn. After the model converges, reliably predicted labels and informative node embeddings are obtained with the LPA and GNN modules respectively. Extensive experiments on various real-world datasets are conducted, and the experimental results empirically demonstrate that the proposed CycProp model can achieve relatively significant gains over the state-of-the-art methods.
In this paper, we address the problem of training deep neural networks in the presence of severe label noise. Our proposed training algorithm ScanMix, combines semantic clustering with semi-supervised learning (SSL) to improve the feature representat ions and enable an accurate identification of noisy samples, even in severe label noise scenarios. To be specific, ScanMix is designed based on the expectation maximisation (EM) framework, where the E-step estimates the value of a latent variable to cluster the training images based on their appearance representations and classification results, and the M-step optimises the SSL classification and learns effective feature representations via semantic clustering. In our evaluations, we show state-of-the-art results on standard benchmarks for symmetric, asymmetric and semantic label noise on CIFAR-10 and CIFAR-100, as well as large scale real label noise on WebVision. Most notably, for the benchmarks contaminated with large noise rates (80% and above), our results are up to 27% better than the related work. The code is available at https://github.com/ragavsachdeva/ScanMix.
Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data a ugmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (textit{e.g.,} absolute 17.44% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا