ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental quantum-enhanced response function estimation

224   0   0.0 ( 0 )
 نشر من قبل Ilaria Gianani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterizing a system often demands learning its response function to an applied field. Such knowledge is rooted on the experimental evaluation of punctual fiducial response and interpolation to access prediction at arbitrary values. Quantum metrological resources are known to provide enhancement in assessing these fiducial points, but the implications for improved function estimation have only recently been explored, and have not been yet demonstrated. Here we show an experimental realization of function estimation based on a photonic achitecture. The phase response of a liquid-crystal to a voltage has been reconstructed by means of quantum and classical phase estimation, providing evidence of the superiority of the former and highlighting the interplay between punctual statistical error and interpolation error. Our results show how quantum resources should successfully be employed to access the rich information contained in continuous signals.



قيم البحث

اقرأ أيضاً

When standard light sources are employed, the precision of the phase determination is limited by the shot noise. Quantum entanglement provides means to exceed this limit with the celebrated example of N00N states that saturate the ultimate Heisenberg limit on precision, but at the same time are extremely fragile to losses. In contrast, we provide experimental evidence that appropriately engineered quantum states outperform both standard and N00N states in the precision of phase estimation when losses are present.
129 - Marco Genovese 2021
Optical quantum interferometry represents the oldest example of quantum metrology and it is at the source of quantum technologies. The original squeezed state scheme is now a significant element of the last version of gravitational wave detectors and various additional uses have been proposed. Further quantum enhanced schemes, from SU(1,1) interferometer to twin beam correlation interferometry, have also reached the stage of proof of principle experiments enlarging the field of experimental quantum interferometry and paving the way to several further applications ranging from Planck scale signals search to small effects detection. In this review paper I introduce these experimental achievements, describing their schemes, advantages, applications and possible further developments.
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the cloning of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks.
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate the phase sensitivity of a five-particle optical spin-squeezed state generated by photon subtraction from a parametric downconversion photon source. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise limit, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
88 - Peter A. Ivanov 2021
We propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn-Teller system composed of a single spin interacting with two bosonic modes. We show that in the first order of the frequency drive the time-independent effective Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of high-frequency drive and low bosonic frequency the quantum Jahn-Teller system exhibits critical behaviour which can be used for high-precision quantum estimation. A major advantage of our scheme is the robustness of the system against spin decoherence which allows to perform parameter estimations with measurement time not limited by spin dephasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا