ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual Electrical Conductivity Driven by Localized Stoichiometry Modification at Vertical Epitaxial Interfaces

78   0   0.0 ( 0 )
 نشر من قبل Wenrui Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise control of lattice mismatch accommodation and cation interdiffusion across the interface is critical to modulate correlated functionalities in epitaxial heterostructures, particularly when the interface composition is positioned near a compositional phase transition boundary. Here we select La1-xSrxMnO3 (LSMO) as a prototypical phase transition material and establish vertical epitaxial interfaces with NiO to explore the strong interplay between strain accommodation, stoichiometry modification, and localized electron transport across the interface. It is found that localized stoichiometry modification overcomes the plaguing dead layer problem in LSMO and leads to strongly directional conductivity, as manifested by more than three orders of magnitude difference between out-of-plane to in-plane conductivity. Comprehensive structural characterization and transport measurements reveal that this emerging behavior is related to a compositional change produced by directional cation diffusion that pushes the LSMO phase transition from insulating into metallic within an ultrathin interface region. This study explores the nature of unusual electric conductivity at vertical epitaxial interfaces and establishes an effective route for engineering nanoscale electron transport for oxide electronics.



قيم البحث

اقرأ أيضاً

Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name polar metal, however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial (MBE) growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of $ABC$ intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy (STEM) reveals a polar structure with unidirectionally buckled $BC$ (PtSb, AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity ($rho_{LaAuGe}=59.05$ $muOmegacdot$cm and $rho_{LaAPtSb}=27.81$ $muOmegacdot$cm at 2K) and high carrier density ($n_hsim 10^{21}$ cm$^{-3}$). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-Chemical Pressure and Crystal Orbital Hamilton Population analyses, the atomic packing factor is found to support the polar buckling of the structure, though the degree of direct interlayer $B-C$ bonding is limited by repulsion at the $A-C$ contacts. When combined with insulating hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures.
Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators LaAlO3 and SrTiO3 distinguish this rich system from conventional two-dimensional electron gase s at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated with focus on the role of defects in the SrTiO3 while the LaAlO3 has been assumed perfect. Our experiments and first principles calculations show that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. While extrinsic defects including oxygen deficiency are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects, an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides a roadmap for identifying other interfaces where emergent behaviors await discovery.
Raman scattering is a ubiquitous phenomenon in light-matter interactions which reveals a materials electronic, structural and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material propert ies. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons which are either traditionally inactive or weak. This Raman scattering can be amplified by nearly two orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly, or via an A1 optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron-phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.
Hard x-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy x-ray photoelectron spectroscopy (VKE-XPS) analyses have been performed on 10 unit cell La$_{(1-{delta})}$Al$_{(1+{delta})}$O$_3$ films, with La:Al ratios of 1.1, 1.0, and 0.9 , deposited on SrTiO$_3$. Of the three films, only the Al-rich film was known to have a conductive interface. VKE-XPS, coupled with maximum entropy analysis, shows significant differences in the compositional depth profile between the Al-rich, the La-rich, and stoichiometric films; significant La enrichment at the interface is observed in the La-rich and stoichiometric films, while the Al-rich shows little to no intermixing. Additionally, the La-rich and stoichiometric films show a high concentration of Al at the surface, which is not observed in the Al-rich film. HAXPES valence band (VB) analysis shows a broadening of the VB for the Al-rich sample relative to the stoichiometric and La-rich samples, which have insulating interfaces. This broadening is consistent with an electric field across the Al-rich film. These results are consistent with a defect driven electronic reconstruction.
Interest in epitaxial ferroelectric nanoislands was growing rapidly in recent years driven by their potential for devices, especially ultradense memories. Recent advances in the bottom- up (self-assembly) nanometer scale techniques have opened up the opportunities of fabricating high-quality epitaxial ferroelectric nanoislands with extremely small thickness and lateral size on the order of 1 nm and 20 nm, respectively. On the other hand, recent emergence of powerful probes, such as piezoresponse force microscopy (PFM), has enabled imaging of a local domain structure with sub-10 nm resolution. In spite of those developments, a clear understanding of the polarization patterns in epitaxial ferroelectric nanoislands is lacking, and some important characteristics, like a critical lateral size for ferroelectricity, are not yet established. Here, we perform ab-initio studies of non-electroded epitaxial Pb(Zr0.5Ti0.5)O3 and BaTiO3 nanoislands and show the existence of novel polarization patterns driven by the misfit strains and/or anisotropy energy. The results allow interpretation of the data and design of the ferroelectric nanostructures with tailored response to external field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا