ﻻ يوجد ملخص باللغة العربية
Motivated by the need to improve the ability to forecast whether a certain coronal mass ejection (CME) is to impact Earth, and by the insufficiency of statistical studies that analyze the whole erupting system with the focus on the governing conditions under CME deflections, we performed a careful analysis of 13 events along a one-year time interval showing large deflections from their source region. We used telescopes imaging the solar corona at different heights and wavelengths on board the Project for Onboard Autonomy 2 (PROBA2), Solar Dynamics Observatory (SDO), Solar TErrestrial RElations Observatory (STEREO), Solar and Heliospheric Observatory (SOHO) spacecraft and from National Solar Observatory (NSO). By taking advantage of the quadrature position of these spacecraft from October 2010 until September 2011, we inspected the 3D trajectory of CMEs and their associated prominences with respect to their solar sources by means of a tie-pointing tool and a forward model. Considering the coronal magnetic fields as computed from a potential field source surface model, we investigate the roles of magnetic energy distribution and kinematic features in the non-radial propagation of both structures. The magnetic environment present during the eruption is found to be crucial in determining the trajectory of CMEs, in agreement with previous reports.
The Large Yield Radiometer (LYRA) is a radiometer that has monitored the solar irradiance at high cadence and in four pass bands since January 2010. Both the instrument and its space- craft, PROBA2 (Project for On-Board Autonomy), have several innova
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability rep
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. The Sun Earth is an integrated physical system in which the space environment of the Earth s
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles
The solar activity in Cycle 23--24 shows differences from the previous cycles that were observed with modern instruments, e.g. long cycle duration and a small number of sunspots. To appreciate the anomalies further, we investigated the prominence eru