ﻻ يوجد ملخص باللغة العربية
For two-dimensional Rayleigh-B{e}nard convection, classes of unstable, steady solutions were previously computed using numerical continuation (Waleffe, 2015; Sondak, 2015). The `primary steady solution bifurcates from the conduction state at $Ra approx 1708$, and has a characteristic aspect ratio (length/height) of approximately $2$. The primary solution corresponds to one pair of counterclockwise-clockwise convection rolls with a temperature updraft in between and an adjacent downdraft on the sides. By adjusting the horizontal length of the domain, (Waleffe, 2015; Sondak, 2015) also found steady, maximal heat transport solutions, with characteristic aspect ratio less than $2$ and decreasing with increasing $Ra$. Compared to the primary solutions, optimal heat transport solutions have modifications to boundary layer thickness, the horizontal length scale of the plume, and the structure of the downdrafts. The current study establishes a direct link between these (unstable) steady solutions and transition to turbulence for $Pr = 7$ and $Pr = 100$. For transitional values of $Ra$, the primary and optimal heat transport solutions both appear prominently in appropriately-sized sub-fields of the time-evolving temperature fields. For $Ra$ beyond transitional, our data analysis shows persistence of the primary solution for $Pr = 7$, while the optimal heat transport solutions are more easily detectable for $Pr = 100$. In both cases $Pr = 7$ and $Pr = 100$, the relative prevalence of primary and optimal solutions is consistent with the $Nu$ vs. $Ra$ scalings for the numerical data and the steady solutions.
If a fluid flow is driven by a weak Gaussian random force, the nonlinearity in the Navier-Stokes equations is negligibly small and the resulting velocity field obeys Gaussian statistics. Nonlinear effects become important as the driving becomes stron
The shape of velocity and temperature profiles near the horizontal conducting plates in turbulent Rayleigh-B{e}nard convection are studied numerically and experimentally over the Rayleigh number range $10^8lesssim Ralesssim3times10^{11}$ and the Pran
Multi-fluid models have recently been proposed as an approach to improving the representation of convection in weather and climate models. This is an attractive framework as it is fundamentally dynamical, removing some of the assumptions of mass-flux
We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-B{e}nard convection cell, using two-dimensional (2D) numerical data obtained
We present mesoscale numerical simulations of Rayleigh-B{e}nard convection in a two-dimensional concentrated emulsion, confined between two parallel walls, heated from below and cooled from above, under the effect of buoyancy forces. The systems unde