ﻻ يوجد ملخص باللغة العربية
We introduce the notion of emph{biharmonic almost complex structure} on a compact almost Hermitian manifold and we study its regularity and existence in dimension four. First we show that there always exist smooth energy-minimizing biharmonic almost complex structures for any almost Hermitian structure on a compact almost complex four manifold, and all energy-minimizers form a compact set. Then we study the existence problem when the homotopy class of an almost complex structure is specified. We obtain existence of energy-minimizing biharmonic almost complex structures which depends on the topology of $M^4$. When $M$ is simply-connected and non-spin, then for each homotopy class which is uniquely determined by its first Chern class, there exists an energy-minimizing biharmonic almost complex structure. When $M$ is simply-connected and spin, for each first Chern class, there are exactly two homotopy classes corresponding to the first Chern class. Given a homotopy class $[tau]$ of an almost complex structure, there exists a canonical operation on the homotopy classes $p$ satisfying $p^2=text{id}$ such that $p([tau])$ and $[tau]$ have the same first Chern class. We prove that there exists an energy-minimizing biharmonic almost complex structure in (at least) one of the two homotopy classes, $[tau]$ and $p([tau])$. In general if $M$ is not necessarily simply-connected, we prove that there exists an energy-minimizing biharmonic almost complex structure in (at least) one of the two homotopy classes $[tau]$ and $p([tau])$. The study of biharmonic almost complex structures should have many applications, in particular for the smooth topology of the underlying almost complex four manifold. We briefly discuss an approach by considering the moduli space of biharmonic almost complex structures and propose a conjecture.
In this paper we consider the existence and regularity of weakly polyharmonic almost complex structures on a compact almost Hermitian manifold $M^{2m}$. Such objects satisfy the elliptic system weakly $[J, Delta^m J]=0$. We prove a very general regul
We study the existence and regularity of energy-minimizing harmonic almost complex structures. We have proved results similar to the theory of harmonic maps, notably the classical results of Schoen-Uhlenbeck and recent advance by Cheeger-Naber.
We prove necessary and sufficient conditions for a smooth surface in a 4-manifold X to be pseudoholomorphic with respect to some almost complex structure on X. This provides a systematic approach to the construction of pseudoholomorphic curves that do not minimize the genus in their homology class.
We continue our study [Ou4] of f-biharmonic maps and f-biharmonic submanifolds by exploring the applications of f-biharmonic maps and the relationships among biharmonicity, f-biharmonicity and conformality of maps between Riemannian manifolds. We are
We define and study the harmonic heat flow for almost complex structures which are compatible with a Riemannian structure $(M, g)$. This is a tensor-valued version of harmonic map heat flow. We prove that if the initial almost complex structure $J$ h