ﻻ يوجد ملخص باللغة العربية
In 1990, Bertoin constructed a measure-valued Markov process in the framework of a Bessel process of dimension between 0 and 1. In the present paper, we represent this process in a space of interval partitions. We show that this is a member of a class of interval partition diffusions introduced recently and independently by Forman, Pal, Rizzolo and Winkel using a completely different construction from spectrally positive stable Levy processes with index between 1 and 2 and with jumps marked by squared Bessel excursions of a corresponding dimension between $-2$ and 0.
Consider a spectrally positive Stable($1+alpha$) process whose jumps we interpret as lifetimes of individuals. We mark the jumps by continuous excursions assigning sizes varying during the lifetime. As for Crump-Mode-Jagers processes (with characteri
We introduce diffusions on a space of interval partitions of the unit interval that are stationary with the Poisson-Dirichlet laws with parameters $(alpha,0)$ and $(alpha,alpha)$. The construction has two steps. The first is a general construction of
We study interval partition diffusions with Poisson--Dirichlet$(alpha,theta)$ stationary distribution for parameters $alphain(0,1)$ and $thetage 0$. This extends previous work on the cases $(alpha,0)$ and $(alpha,alpha)$ and builds on our recent work
We construct a pair of related diffusions on a space of interval partitions of the unit interval $[0,1]$ that are stationary with the Poisson-Dirichlet laws with parameters (1/2,0) and (1/2,1/2) respectively. These are two particular cases of a gener
We first consider interval partitions whose complements are Lebesgue-null and introduce a complete metric that induces the same topology as the Hausdorff distance (between complements). This is done using correspondences between intervals. Further re