ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced optical activity 12 days before X-ray activity, and a 4 day X-ray delay during outburst rise, in a low-mass X-ray binary

127   0   0.0 ( 0 )
 نشر من قبل Adelle Goodwin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray transients, such as accreting neutron stars, periodically undergo outbursts, thought to be caused by a thermal-viscous instability in the accretion disk. Usually outbursts of accreting neutron stars are identified when the accretion disk has undergone an instability, and the persistent X-ray flux has risen to a threshold detectable by all sky monitors on X-ray space observatories. Here we present the earliest known combined optical, UV, and X-ray monitoring observations of the outburst onset of an accreting neutron star low mass X-ray binary system. We observed a significant, continuing increase in the optical i-band magnitude starting on July 25, 12 days before the first X-ray detection with Swift/XRT and NICER (August 6), during the onset of the 2019 outburst of SAX J1808.4-3658. We also observed a 4 day optical to X-ray rise delay, and a 2 day UV to X-ray delay, at the onset of the outburst. We present the multiwavelength observations that were obtained, discussing the theory of outbursts in X-ray transients, including the disk instability model, and the implications of the delay. This work is an important confirmation of the delay in optical to X-ray emission during the onset of outbursts in low mass X-ray binaries, which has only previously been measured with less sensitive all sky monitors. We find observational evidence that the outburst is triggered by ionisation of hydrogen in the disk.



قيم البحث

اقرأ أيضاً

After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest t o understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20$^{mathrm{th}}$, 15:50 UTC to June 25$^{mathrm{th}}$, 4:05 UTC, from the optical V-band, up to the soft $gamma$-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as $sim$ 20~min from peak to peak. A model-independent analysis shows that the $>$6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability rema ins poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
We construct a new catalog of extragalactic X-ray binaries (XRBs) by matching the latest Chandra source catalog with local galaxy catalogs. Our XRB catalog contains 4430 XRBs hosted by 237 galaxies within ~130 Mpc. As XRBs dominate the X-ray activity in galaxies, the catalog enables us to study the correlations between the total X-ray luminosity of a galaxy $L_{X,rm tot}$, star formation rate $dot{rho}_star$, and stellar mass $M_star$. As previously reported, $L_{X,rm tot}$ is correlated with $dot{rho}_star$ and $M_star$. In particular, we find that there is a fundamental plane in those three parameters as $log L_{X,rm tot}={38.80^{+0.09}_{-0.12}}+log(dot{rho}_star + alpha M_star)$, where $alpha = {(3.36pm1.40)times10^{-11}} {rm yr^{-1}}$. In order to investigate this relation, we construct a phenomenological binary population synthesis model. We find that the high mass XRB and low mass XRB fraction in formed compact object binary systems is ~9% and ~0.04%, respectively. Utilizing the latest XMM-Newton, and Swift X-ray source catalog data sets, additional XRB candidates are also found resulting in 5757 XRBs hosted by 311 galaxies.
Aims: We present a study of the Be/X-ray binary system V 0332+53 with the main goal of characterizing its behavior mainly during the intermediate-luminosity X-ray event on 2008. In addition, we aim to contribute to the understanding of the global beh avior of the donor companion by including optical data from our dedicated campaign starting on 2006. Methods: V 0332+53 was observed by RXTE and Swift during the decay of the intermediate-luminosity X-ray outburst of 2008, as well as with Suzaku before the rising of the third normal outburst of the 2010 series. In addition, we present recent data from the Spanish ground-based astronomical observatories of El Teide (Tenerife), Roque de los Muchachos (La Palma), and Sierra Nevada (Granada), and since 2006 from the Turkish TUBITAK National Observatory (Antalya). We have performed temporal analyses to investigate the transient behaviour of this system during several outbursts. Results: Our optical study revealed that continuous mass ejection episodes from the Be star have been taking place since 2006 and another one is currently ongoing. The broad-band 1-60 keV X-ray spectrum of the neutron star during the decay of the 2008 outburst was well fitted with standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K-alpha fluorescence line at 6.4 keV. For the first time in V 0332+53 we tentatively see an increase of the cyclotron line energy with increasing flux (although further and more sensitive observations are needed to confirm this). Regarding the fast aperiodic variability, we detect a Quasi-Periodic Oscillation (QPO) at 227+-9 mHz only during the lowest luminosities. The latter fact might indicate that the inner regions surrounding the magnetosphere are more visible during the lowest flux states.
Periodic dips observed in approx. 20% of low-mass X-ray binaries are thought to arise from obscuration of the neutron star by the outer edge of the accretion disk. We report the detection with the Rossi X-ray Timing Explorer of two dipping episodes i n Aql X-1, not previously a known dipper. The X-ray spectrum during the dips exhibited an elevated neutral column density, by a factor between 1 and almost two orders of magnitude. Dips were not observed in every cycle of the 18.95-hr orbit, so that the estimated frequency for these events is 0.10 (+0.07,-0.05)/cycle. This is the first confirmed example of intermittent dipping in such a system. Assuming that the dips in Aql X-1 occur because the system inclination is intermediate between the non-dipping and dipping sources, implies a range of 72-79 deg. for the source. This result lends support for the presence of a massive (> 2 M_sun) neutron star in Aql X-1, and further implies that approx. 30 additional LMXBs may have inclinations within this range, raising the possibility of intermittent dips in those systems also. Thus, we searched for dips from 24 other bursting systems, without success. For the system with the largest number of dip phases covered, 4U 1820-303, the nondetection implies a 95% upper limit to the dip frequency of 1.4E-3/cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا